565 research outputs found

    WISCONSIN NON-INDUSTRIAL PRIVATE FOREST LANDOWNERS AND WOOD-BASED BIOENERGY

    Get PDF
    Wood-based bioelectricity production is expanding due to its ability to reduce greenhouse gas emissions compared to conventional fossil fuel resources. U.S. non-industrial private forest landowners (NIPFs) are key to the production of wood-based bioelectricity since they own 59% of the forestland in the country that could supply bioelectricity feedstocks (The National Association of State Foresters 2018). This is particularly important in states like Wisconsin with a mandatory renewable portfolio electricity standard (RPS). My dissertation focuses on issues around Wisconsin bioelectricity production including related NIPF views and the creation of the state’s sustainable biomass harvesting guidelines. In Chapter Two, I present findings from analysis of NIPF interviews showing that they support local bioelectricity production while holding concerns about negative social and ecological impacts. Chapter Three focuses on findings from a survey conducted of NIPFs close enough to a local bioelectricity plant to supply it with biomass feedstock. I found that they perceive the plant as having negative environmental but positive socioeconomic impacts and that environmental membership was negatively associated with support for local bioelectricity. Chapter Four presents findings from my study of Wisconsin’s biomass harvesting guidelines (BHGs) creation process. These findings focus on the degree to which the process adhered to Collaborative Governance (CG) guidelines and how this process impacted outcomes. In combination, these three chapters enhance our understanding of the sustainability dimensions of Wisconsin’s RPS and suggest strategies related to the success of state and federal renewable energy and bioelectricity goals

    The Jackknife and Multilevel Modeling: A New Application of an Old Trick

    Get PDF
    In this article the authors demonstrate two instances where the jackknife can be used to enhance hierarchical linear model (HLM) analyses. The jackknife was used to improve the HLM estimates of composite measures by jackknifing over items. The first study examined fixed-effects and variance component estimation. The jackknife appeared to reduce the bias in the estimates both of slopes and of variances by implicitly adjusting for item-by-person and item-by-group interactions. The second study examined the utility of the jackknife as a multilevel item analysis tool. The results suggest that pseudovalues offer a unique opportunity for isolating item variability in multilevel data. The jackknife seems to offer enhancements and insights to conventional HLM analyses

    Effects of Body Shape on Literal Objectification: When Ideal May Be Less Than Ideal

    Get PDF
    Objectification, or the tendency to adopt an externalized view of self/other, is a ubiquitous process disproportionately affecting women (Fredrickson & Roberts, 1997). Recent work has examined literal objectification, defined as “any outcome in which a person is perceived as, or behaves, objectlike, relative to humanlike” (Heflick & Goldenberg, 2014, p. 225). Focusing on women’s physical appearance heightens literal objectification, including reduced perceptions of warmth, competence, and morality (Heflick et al., 2011). We investigated whether participants’ ratings of literal objectification vary as a function of body type. Seventy-one college women (Mage = 19.23) viewed three photos of women, manipulated to depict low, average, and high ideal body shapes. Participants rated the degree to which each woman possessed competence, warmth and morality, and their desire to collaborate on a group project with them. Average images were rated as significantly higher on warmth, morality, and collaboration desirability than high ideal and low ideal images, and marginally more competent than high ideal images. High ideal images were rated as significantly lower on warmth and marginally lower on collaboration desirability than low ideal images. Future research should extend this work to evaluate behavioral manifestations of literal objectification and explore what other factors might moderate these effects

    The InfraRed Imaging Spectrograph (IRIS) for TMT: photometric precision and ghost analysis

    Get PDF
    The InfraRed Imaging Spectrograph (IRIS) is a first-light instrument for the Thirty Meter Telescope (TMT) that will be used to sample the corrected adaptive optics field by NFIRAOS with a near-infrared (0.8 - 2.4 μ\mum) imaging camera and Integral Field Spectrograph (IFS). In order to understand the science case specifications of the IRIS instrument, we use the IRIS data simulator to characterize photometric precision and accuracy of the IRIS imager. We present the results of investigation into the effects of potential ghosting in the IRIS optical design. Each source in the IRIS imager field of view results in ghost images on the detector from IRIS's wedge filters, entrance window, and Atmospheric Dispersion Corrector (ADC) prism. We incorporated each of these ghosts into the IRIS simulator by simulating an appropriate magnitude point source at a specified pixel distance, and for the case of the extended ghosts redistributing flux evenly over the area specified by IRIS's optical design. We simulate the ghosting impact on the photometric capabilities, and found that ghosts generally contribute negligible effects on the flux counts for point sources except for extreme cases where ghosts coalign with a star of Δ\Deltam>>2 fainter than the ghost source. Lastly, we explore the photometric precision and accuracy for single sources and crowded field photometry on the IRIS imager.Comment: SPIE 2018, 14 pages, 14 figures, 4 tables, Proceedings of SPIE 10702-373, Ground-based and Airborne Instrumentation for Astronomy VII, 10702A7 (16 July 2018

    The Infrared Imaging Spectrograph (IRIS) for TMT: Data Reduction System

    Get PDF
    IRIS (InfraRed Imaging Spectrograph) is the diffraction-limited first light instrument for the Thirty Meter Telescope (TMT) that consists of a near-infrared (0.84 to 2.4 ÎĽ\mum) imager and integral field spectrograph (IFS). The IFS makes use of a lenslet array and slicer for spatial sampling, which will be able to operate in 100's of different modes, including a combination of four plate scales from 4 milliarcseconds (mas) to 50 mas with a large range of filters and gratings. The imager will have a field of view of 34Ă—\times34 arcsec2^{2} with a plate scale of 4 mas with many selectable filters. We present the preliminary design of the data reduction system (DRS) for IRIS that need to address all of these observing modes. Reduction of IRIS data will have unique challenges since it will provide real-time reduction and analysis of the imaging and spectroscopic data during observational sequences, as well as advanced post-processing algorithms. The DRS will support three basic modes of operation of IRIS; reducing data from the imager, the lenslet IFS, and slicer IFS. The DRS will be written in Python, making use of open-source astronomical packages available. In addition to real-time data reduction, the DRS will utilize real-time visualization tools, providing astronomers with up-to-date evaluation of the target acquisition and data quality. The quicklook suite will include visualization tools for 1D, 2D, and 3D raw and reduced images. We discuss the overall requirements of the DRS and visualization tools, as well as necessary calibration data to achieve optimal data quality in order to exploit science cases across all cosmic distance scales.Comment: 13 pages, 2 figures, 6 tables, Proceeding 9913-165 of the SPIE Astronomical Telescopes + Instrumentation 201

    Thirty Meter Telescope Narrow Field InfraRed Adaptive Optics System Real-Time Controller Prototyping Results

    Get PDF
    Prototyping and benchmarking was performed for the Real-Time Controller (RTC) of the Narrow Field InfraRed Adaptive Optics System (NFIRAOS). To perform wavefront correction, NFIRAOS utilizes two deformable mirrors (DM) and one tip/tilt stage (TTS). The RTC receives wavefront information from six Laser Guide Star (LGS) Shack- Hartmann WaveFront Sensors (WFS), one high-order Natural Guide Star Pyramid WaveFront Sensor (PWFS) and multiple low-order instrument detectors. The RTC uses this information to determine the commands to send to the wavefront correctors. NFIRAOS is the first light AO system for the Thirty Meter Telescope (TMT). The prototyping was performed using dual-socket high performance Linux servers with the real-time (PREEMPT_RT) patch and demonstrated the viability of a commercial off-the-shelf (COTS) hardware approach to large scale AO reconstruction. In particular, a large custom matrix vector multiplication (MVM) was benchmarked which met the required latency requirements. In addition all major inter-machine communication was verified to be adequate using 10Gb and 40Gb Ethernet. The results of this prototyping has enabled a CPU-based NFIRAOS RTC design to proceed with confidence and that COTS hardware can be used to meet the demanding performance requirements

    Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae

    Get PDF
    Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment.Jennifer R. Bellon, Frank Schmid, Dimitra L. Capone, Barbara L. Dunn, Paul J. Chamber

    The Infrared Imaging Spectrograph (IRIS) for TMT: Multi-tiered wavefront measurements and novel mechanical design

    Get PDF
    The InfraRed Imaging Spectrograph (IRIS) will be the first light adaptive optics instrument on the Thirty Meter Telescope (TMT). IRIS is being built by a collaboration between Caltech, the University of California, NAOJ and NRC Herzberg. In this paper we present novel aspects of the Support Structure, Rotator and On-Instrument Wavefront Sensor systems being developed at NRC Herzberg. IRIS is suspended from the bottom port of the Narrow Field Infrared Adaptive Optics System (NFIRAOS), and provides its own image de-rotation to compensate for sidereal rotation of the focal plane. This arrangement is a challenge because NFIRAOS is designed to host two other science instruments, which imposes strict mass requirements on IRIS. As the mechanical design of all elements has progressed, we have been tasked with keeping the instrument mass under seven tonnes. This requirement has resulted in a mass reduction of 30 percent for the support structure and rotator compared to the most recent IRIS designs. To accomplish this goal, while still being able to withstand earthquakes, we developed a new design with composite materials. As IRIS is a client instrument of NFIRAOS, it benefits from NFIRAOS’s superior AO correction. IRIS plays an important role in providing this correction by sensing low-order aberrations with three On-Instrument Wavefront Sensors (OIWFS). The OIWFS consists of three independently positioned natural guide star wavefront sensor probe arms that patrol a 2-arcminute field of view. We expect tip-tilt measurements from faint stars within the IRIS imager focal plane will further stabilize the delivered image quality. We describe how the use of On-Detector Guide Windows (ODGWs) in the IRIS imaging detector can be incorporated into the AO correction. In this paper, we present our strategies for acquiring and tracking sources with this complex AO system, and for mitigating and measuring the various potential sources of image blur and misalignment due to properties of the mechanical structure and interface
    • …
    corecore