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In this article the authors demonstrate two instances where the jackknife can be used to
enhance hierarchical linear model (HLM) analyses. The jackknife was used to improve the
HLM estimates of composite measures by jackknifing over items. The first study examined
fixed-effects and variance component estimation. The jackknife appeared to reduce the bias in
the estimates both of slopes and of variances by implicitly adjusting for item-by-person and
item-by-group interactions. The second study examined the utility of the jackknife as a
multilevel item analysis tool. The results suggest that pseudovalues offer a unique opportu-
nity for isolating item variability in multilevel data. The jackknife seems to offer enhance-
ments and insights to conventional HLM analyses.

In recent years practice in psychometrics has shifted from classical approaches
to more complicated analyses. As the sophistication of our techniques in-
creases, lessons learned from classical principles may be lost. In advanced
analyses such as linear structural equation modeling or multilevel modeling
(including hierarchical linear modeling [HLM]), it is easy to get sidetracked by
the intricacies of the models and the complexities of the estimations and to
forget that the original measures are errorful and not true scores. As a result,
we may fail to take into account the biasing effects that measurement error can
have on estimation and interpretation. For example, multiple indicators are
often built into structural equation or HLM models in an attempt to separate
the effects of latent variables from those of uncorrelated measurement errors.
However, the use of these indicators requires serious consideration of relevant
measurement techniques and error structures, especially the relationship
among items, constructs, and the item sample size. Any variable can include
error and these errors can cumulate and correlate, producing bias. Classical
approaches are designed specifically to address error structures at both test
and item levels and, therefore, could theoretically be used to improve sophisti-
cated analyses.

The purpose of this article is to meld classical theories and methods with
advanced models and estimation procedures. Specifically, the utility of the
jackknife in HLM analyses of composite measures is examined. The jackknife is
used to try to improve fixed-effects estimation, to find true-score variance
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components by implicitly adjusting for item-by-person and item-by-group
interactions, and to quantify item variability at both student and classroom
levels. Special attention is directed to the sizes and locations of the interactions
and the implications of these findings for educational measurement.

Hierarchical Linear Modeling

The hierarchy inherent in educational data makes such data appropriate for
HLM analyses, as HLM analyzes regression equations at multiple levels simul-
taneously (Raudenbush & Byrk, 2002). For example, consider a two-level anal-
ysis of student achievement with students nested within classrooms. A
multiple regression model relates independent student variables (e.g., gender,
initial knowledge) and the outcome variable (final student achievement). Inde-
pendent classroom-level variables (e.g., teacher experience, classroom resour-
ces) influence the expected student achievement and also modify the relative
effects of student-level variables on achievement. HLM also estimates the
overall outcome variability and the variability of the effects.

Although HLM techniques allow for sophisticated modeling of educational
data, the resulting estimates remain, from a psychometric perspective, point
estimates that are influenced by systematic measurement error and are probab-
ly biased. The measurement error is conceptualized as arising because most
educational indicators are composites of individual variables: that is, they are
constructed from item samples. Specifically, the dependent variables—and
often independent variables—are test scores based on responses to multiple
items, and each item response contains measurement error. Computing test
scores as averages of the item responses reduces the error relative to the error
of single items, but is still dependent on item heterogeneity and on test length.
In an HLM analysis, item-by-person interactions or item-by-group (classroom)
interactions are subsumed in the variances of the composite test scores, but are
confounded with and therefore may bias the estimates of structural coefficients
and variances.

Jackknife
The jackknife originally developed by Quenouille (1956) and later modified by
Mosteller and Tukey (1977) can be used to quantify the amount of bias in an
estimate, reduce the bias in the estimate, and finally place confidence intervals
around the new unbiased estimate. Essentially, the jackknife is a re-sampling
technique that uses multiple estimates based on subsets of the original observa-
tions to correct for the bias. The unknown estimates are first calculated using
the entire sample and then recalculated using parts of the sample. Weighted
combinations of the subsample estimates and the original estimate are used to
create a jackknife estimate in which the magnitude of bias will be reduced
(Miller, 1964; Quenouille, 1956). The jackknife works to remove sampling bias
and can expand the applications of procedures that would normally be restrict-
ed to large samples or samples that meet normality assumptions (Rogers,
1976).

Jackknife methods are believed to provide direct numerical approximations
of both bias and standard error and to give reliable confidence limits. In a
comprehensive review of the jackknife, Miller (1974) noted successful applica-
tion of the jackknife to ratio estimators, u-statistics, regression estimates,
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variance inferences, and multivariate analyses. He went on to hypothesize
successful use of the jackknife in linearly transformed order statistics, correla-
tion coefficients, and outlier analyses. Since that review, jackknife principles
have also been applied to factor loadings, multiple matrix sampling, reliability,
and maximum likelihood estimates (Brennan, Harris, & Hanson, 1987;
Huitema, & McKean, 1994; Wilcox, 1997). In terms of confidence interval ap-
plications, the jackknife has been shown to be robust against non-normality,
useful with small sample sizes, and a valuable tool for the internal replication
of a study (Pandey & Hubert, 1975; White, 2000).

Objectives

Melding HLM and jackknifing techniques offers multiple advantages. First, the
jackknife has been proven somewhat useful for removing the bias in the
variance of student achievement scores (Kifer, Wolfe, & Schmidt, 1993; Kifer &
Wolfe, 1986; Miller, 1974). Second, the jackknife has been shown to be a useful
procedure for estimating the true score variance of an individual item (Schmidt
& Wolfe, 1983). The pseudovalues provide a form of item analysis that can help
to investigate the influence of each item on the other items. In HLM, because
analyses are being conducted on multiple levels, the situation is further compli-
cated. Biased estimates have the potential to arise at each of the levels. We
performed two studies to investigate whether the jackknife can be used (a) to
remove the bias, and (b) to support item analyses at multiple data levels.

Study 1

Purpose

Theoretically, by jackknifing over items, the bias in HLM variance component
estimates resulting from composite measurements will be reduced. In HLM,
individual systematic errors can also influence the accuracy of estimates on
multiple levels. Specifically, when items are administered to multiple students
across multiple classrooms, the item response systematic errors can lead to
biased estimates at both student and classroom levels. The purpose of the first
study is to investigate the feasibility of applying the jackknife to HLM variance
estimates.

Data Source

The IEA Second International Mathematics Study (SIMS; Burstein, 1993) was
the first—and is so far the only—major international educational achievement
survey to have collected data at more than one point in time on the same
students. In six other countries and two Canadian provinces, the same stu-
dents, classrooms, and schools were sampled at the beginning and at the end of
grade 8. The students were tested in mathematics knowledge and skill. These
achievement data, together with a rich array of questionnaire data from stu-
dents, teachers, and schools, provide a basis for studying cognitive growth and
its correlates.

To investigate the effects of measurement errors in composite measures on
HLM analyses, a set of items, 8 algebra and 8 geometry, from the “core” SIMS
test form was used. These items were answered by all students at the beginning
and the end of the school year. In addition, at the end of the year the classroom
teachers answered an opportunity to learn (OTL) question about the items: Did
the students in the classroom have the opportunity to learn the mathematics
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necessary to answer the question? OTL was incorporated into the model as a
classroom-level variable whereas student gender was considered a student-
level demographic variable. The analysis was conducted for four of the SIMS
populations: France (7,226 students in 335 schools), Ontario (Canada, 3,877
students in 161 schools), New Zealand (4,469 students in 175 schools), and the
United States (4,846 students in 284 schools).

HLM

A conventional HLM analysis of these data would consider the end-of-year
achievement (T, achievement) as the dependent variable and the beginning-of-
year achievement (T, achievement) and student gender (sex; 0 for female, 1 for
male) as independent student-level variables. OTL is considered an inde-
pendent classroom-level variable. The intercept and slope coefficients in the
regression of T, achievement on T, achievement and sex would be considered
to vary from class to class in part systematically depending on OTL and in part
randomly. This analysis, following the notation of Byrk and Raudenbush
(2002), is as follows:

Ty = Bo,' +B;; * SEX + sz T+
Bo,' =Yoo + Y ¥ OTL + 1y,
By = + 1y
Baj = Yoo + 1y

The first formula is the structure of the regression within classroom, and
says that student i’s achievement at time 2 (T,,) is a function of the average
achievement (B,) in classroom j, the gender effect () in classroom j, the time 1
achievement effect (B,) in classroom j, and random student error (r;). The next
formula says that the average within-classroom achievement (f3,) depends on
the grand mean achievement (y,,), the effect of OTL (Y,,) and random classroom
error (uy). The last two formulas state that the regression coefficients for SEX
and T, achievement are dependent on the average gender effect (y,,) and
average T, achievement effect (y,,) and random variation (u;; and u,) respec-
tively. All the independent variables were group centered and the classroom
averages are set at the female level of 0. Although all the items were fitted with
the same model, the algebra and geometry items were analyzed separately.

Jackknife

The three variables T, achievement, T, achievement, and OTL are composites
over each set (algebra and geometry) of eight items. They have measurement
error because those eight items are a sample from a potentially much larger set
of items, and potential item-by-student interactions (some items were better
understood by some students at the beginning of the year or were more
frequently learned), item-by-classroom interactions (some items were on
average better understood, learned more and/or taught more in certain class-
rooms), and item-by-variable effect (T; achievement, sex, and OTL) interac-
tions.

To disaggregate some of these measurement effects, we jackknifed over
items. That is, the HLM model is analyzed first using the composite measures
for all eight items, then, in turn, one at a time, each item is dropped and the
analysis is rerun. (Note that the metric for the composite measures is kept
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constant by rescaling the seven-item scores to an eight-item total.) Pseudo-
values are constructed by subtracting the estimates obtained for each of the
replicated analyses (8 analyses of 7 items) from the first analysis estimates (all
8 items). The average of these pseudovalues represents the jackknifed (un-
biased) estimate. The pseudovalues were also used to compute standard errors
and t-statistics for the jackknifed estimates as a measure of the precision and
significance.

The entire procedure was repeated for each test (algebra and geometry) and
each of the four countries.

Results

The results for each country are presented in Table 1. The estimates from the
conventional HLM analysis (including all 8 items) are labeled as ALL. The
jackknife results (based on the average difference between ALL and the 7-item
analyses) are labeled /K. They represent estimates of what the HLM parameters
and variances would be if we were able to use a composite measure that
included the population of items from which our eight items is a sample. In
psychometric terms, the estimates are “disattenuated for unreliability.” The
original HLM (ALL) and jackknifed (JK) HLM estimates are plotted in Figure 1.

Discussion

Across geometry and algebra and across the four countries, there is consistent
evidence that a conventional analysis underestimates the slope (y,,) of T,
achievement. In all cases, except geometry for the US, the jackknifed slope is
higher than the original slope. This means that the errors in the student scores
T, and T, were attenuating their correlations. (The US geometry result is
anomalous, as is clear in Figure 1, and requires further investigation because it
is producing negative error variances.) From our psychometric perspective, we
are obtaining information that the slopes in the population of items are higher
than they seem in the sample of items.

The variances in the slopes of the initial testing (u,) are small, but they are
consistently larger when estimated with the jackknife. This means that the item
slopes vary in different ways and that the jackknife has removed some bias.

The influence of OTL (y,,) is about the same with the original and the
jackknife estimation, so item-by-classroom interactions in OTL affecting
achievement are not pronounced.

There is only a significant overall SEX effect (y,,) for geometry in France.
There is significant variability over classrooms in the SEX slopes (uy)), for all
countries and both subjects except geometry in Ontario. None of the gender
coefficients is very different between the original and the jackknifed estimates,
indicating that the effects are homogeneous over items.

The jackknifed error variances for students (r;) and classrooms (i) are
always lower than in the original HLM analysis. This means that for both
classrooms and students within classrooms, the item-based measurement error
was inflating the variance estimates. Generally, the inflation was greater for
individuals, suggesting that individual-by-item interactions are relatively
greater than classroom-by-item interactions. Our jackknifed variances are es-
timates of the variability if a long test were used. The implication is that with
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Table 1
SIMS Original and Jackknife HLM Analyses by Country and Topic

Geometry Algebra
All JK  JUKSE JKT All JK JKSE JKT

France

Grand Mean 1.26 .69 .182 3.78 244 174 441 3.95
OoTL 19 .24 .060 3.97 14 .16 .047 3.42
Sex Slope .35 .28 .087 3.20 .24 .20 133 152
T1 Achievement Slope .44 .63 .063 10.01 .38 .54 .048 11.41
Classroom variance .62 .51 .082 6.17 e .61 .082 744
Sex variance 37 .29 .071 414 .33 .28 .083 3.35
T1 variance .09 11 .051 2.15 .09 18 .057 3.07
Student variance 1.41 .92 .066 13.83 1.43 .92 .085 10.83
Ontario

Grand Mean 1.88 1.27 .300 4.23 1.56 91 .375 2.44
OTL .21 .23 .044 524 19 22 .068 3.19
Sex Slope .08 .03 .097 .27 -05 -.06 .076 -.83
T1 Achievement Slope .49 .66 .039 17.00 .45 .63 .044 1416
Classroom variance .69 .62 110 5.68 .70 .73 177 410
Sex variance 15 .00 .085 .06 .38 .36 .054 6.73
T1 variance 1 14 .037 3.83 15 .21 .026 8.03
Student variance 1.59 1.12 .042 26.43 1.51  1.02 .084 12.12
New Zealand

Grand Mean 184 1.15 449 257 177 1.20 268 4.46
OTL .16 .18 .074 246 13 13 .052 243
Sex Slope -02 -.09 .073 -1.28 .02 .01 .109 12
T1 Achievement Slope .54 74 .044 16.92 .43 .63 .068 9.30
Classroom variance .84 .70 137  5.10 .56 .31 174 1.81
Sex variance .45 .45 113 4.00 .27 .20 137 1.50
T1 variance .08 .09 .026 3.38 .10 14 .035 4.07
Student variance 1.52 1.02 .031 32.56 1.47 .95 .075 12.69
United States

Grand Mean 1.27 -1.86 .287 -6.47 1.25 .79 .351 2.26
OTL .23 .43 .052 823 .28 .28 .038 7.46
Sex Slope .03 -.04 .036 -1.15 -04 -05 .085 -.64
T1 Achievement Slope .39 15 .042 3.53 .36 .51 .044 11.64
Classroom variance .85 -27 160 -1.67 .92 .79 175 454
Sex variance .24 .31 110 2.85 .25 .25 .090 279
T1 variance .15 .16 .022 7.46 A1 A7 .041 4.22
Student variance ‘ 1.37 -.03 128 -26 1.48 1.00 .081 1237

such a “true score” the importance of the between-classroom variances in-
creases relative to the between-student variances.

Discussion
The jackknife was found consistently to reduce all estimates of variability and
a few of the slope estimates. According to the results of this study, the greatest
amount of bias occurs in the level 1 variance estimates and is probably due to
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Figure 1. SIMS original (All) versus jackknife estimates for HLM parameters
by country and topic.

item-by-person interactions. The classroom level variance estimates appear
slightly biased; however, the amount of bias is quite small.

Study 2

The first study expanded the application of the jackknife to include the quan-
tification and removal of bias in HLM estimates for multilevel data. The pseu-
dovalues (produced by the jackknife procedure) have been shown to be a
useful item analysis tool for estimating the true score variance of an individual
item (Schmidt & Wolfe, 1983). In HLM these item relationships have the poten-
tial to vary across multiple levels. Theoretically a “good” item at the student-
level may be a “poor” item at the school level. Alternatively, poor items at the
student level may function well at the school level. The purpose of the second
investigation is to determine the usefulness of combining the jackknife and
HLM for multilevel item analyses.

Data Source

The Third International Mathematics and Science Study (TIMSS) was con-
ducted in 1994-1995 to compare student performance across more than 40
countries. In addition to achievement items, the students also responded to
questions about classroom practices. The questions about practices in mathe-
matics classrooms were either oriented toward student behaviors or teacher
behaviors. For example, the students were asked how often they copied notes
from the board or discussed completed homework and how often the teacher
explained the rules or questioned students’ knowledge. Questions were
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Figure 2. The distribution of Level 1 (student) pseudovalues.

designed on a 4-point Likert-type scale ranging from almost always (1) to never
4).

Although Study 1 was able to analyze data from four countries, the sam-
pling method employed in TIMSS (one classroom per school) resulted in class-
room effects being confounded with school effects, thereby limiting the data
appropriate for an HLM item analysis. Sweden was one of a few countries to
select multiple classrooms within each school and the only country to select
multiple classrooms from the same academic stream. The responses of 916
grade 8 students with no missing data from 32 schools in Sweden were used in
this study. A total of 20 opinion items were examined.

The item responses were averaged to form an overall score. In addition, 20
subscale scores were formed by dropping one item at a time. For example,
Subscale 1 was the average of Items 2 through 20; Subscale 2 was the average of
all items except Item 2; Subscale 3 was the average of all items except Item 3.

HLM

A two-level HLM analysis was conducted on the total scale (including all
items) with no additional variables. The main purpose of this study was to
examine the feasibility of performing multilevel item analyses using the jack-
knife and HLM. The influence of additional independent variables was not of
primary interest. Therefore, a simple variance decomposition analysis was
sufficient. The HLM model was applied 20 additional times using the different
subscale scores as the dependent variable.

Jackknife

Two variance component estimates were obtained for each of the 21 HLM
analyses: one for the student level and one for the school level. Because
variance component estimates theoretically have a lower bound of zero, but
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Figure 3. The distribution of Level 2 (school) pseudovalues.

computationally negative variances can result, the log of the estimates was
taken before implementing the jackknife formula. Pseudovalues (Pseudo) were
calculated for each item by taking the weighted difference between the log of
the subscale variance estimates (o7, ; i.e., 6 estimated without item i) and the
log of the overall score variance estimate:

Pseudo;= k x log (6% — (k—1)x log(c7)

The average of these pseudovalues is the jackknifed estimate of the variance.
Finally, the pseudovalues and jackknifed estimates were transformed back to
the original scale by taking the antilog.

Item-Total Correlations

Item-total correlations are commonly used to assess item properties. However,
they are limited in an HLM context because they do not examine item perfor-
mance on multiple levels unless aggregated. However, in order to make ade-
quate comparisons, classical corrected item-total correlations were calculated
at the student-level and analogous corrected item-total correlations at the class-
room level were calculated using classroom item means. These results were
then compared with the item pseudovalues at each of the two levels.

Results

The resulting variance component estimates are given in Table 2 and in Figures
2 and 3. The solid horizontal line in each figure represents the HLM variance
estimate, whereas the dotted line represents the jackknifed estimate. The
largest difference between the HLM estimate and the jackknifed estimate oc-
curred at the student level. A small amount of difference was also evident
between the school-level HLM and jackknifed estimates. These results support
the results of Study 1.
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Figure 4. The relationship between item pseudovalues and corrected item-total correlation at
Level 1 (student).

The student- and school-level item pseudovalues are also displayed in
Figures 2 and 3 respectively. The student-level pseudovalues are much more
variable than the school-level variables. Despite the increased variability, the
item pseudovalues appear to have a fairly even dispersion.

Further analyses of the item pseudovalues were conducted by comparing
them with appropriate corrected item-total correlations. A robust least squares
regression was plotted for both teacher- and school-level data. Specifically, the
pseudovalue was regressed on the item-total correlation. The pseudovalues
and the corrected item-total correlations are displayed in Figures 4 and 5.
Although both figures show positive correlations, the relationship at the stu-
dent level is much stronger (r = .46) than the relationship at the school level
(r=.06). The reduced correlation at the school level is appropriate when one
considers the reduced item variability that naturally occurs during aggrega-
tion.

Discussion
The pseudovalues represent the individual item variance. Therefore, theoreti-
cally pseudovalues can be used for item analyses. The results of the second

Table 2
A Comparison of HLM and Jackknife Variance Component Estimates in
TIMSS
HLM variance estimate Jackknife variance estimate
Student (Level 1) 0.2629 (84%) 0.2376 (85%)
School (Level 2) 0.0592 (16%) 0.0587 (15%)
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Figure 5. The relationship between item pseudovalues and corrected item-total correlations at
Level 2 (school).

study support this notion. If the variance of the scale without one item is
smaller than the original variance estimate for the whole scale, then the item
that was removed has a large pseudovalue. Items with large pseudovalues
have high variance contributions and therefore high covariances with the other
items on the scale. According to this principle, Items 1 and 12 appear to be good
items at the student level, whereas Items 3 and 9 could be improved. In
contrast, Items 16 and 17 appear to be good items at the school level, whereas
Items 2 and 19 appear to be having little influence. Item 1 appears to be
influencing the variance components on both student and school levels.

Items with high pseudovalues are expected to have a high item-total cor-
relation. In contrast, items with low pseudovalues have low variance contrib-
utions, low inter-item covariances, and, therefore, low item-total correlations.
If the item pseudovalue is small, then the item has a low amount of variation
and does not provide much information. If the pseudovalue is high, then the
item is providing a lot of information. Examining the pseudovalues generated
when using the jackknife on HLM estimates offers a unique opportunity for
multilevel item analysis.

Conclusion
Jackknifing over the items of composite measures seems to offer enhancements
and insights to conventional HLM analyses. It appears to reduce the bias in the
estimates, both of slopes and of variances. Future research should examine the
consistency of these results with larger datasets and different variance com-
ponents. Specifically, the approach should be tested when a larger proportion
of the variance lies at the second level. The studies should also be expanded to
include models with more than two levels and repeated measure designs.
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Finally, a simulation study aimed at quantifying the amount of bias reduction
and verifying the item analysis results should be conducted.
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