1,115 research outputs found

    Use and Protection of GPS Sidelobe Signals for Enhanced Navigation Performance in High Earth Orbit

    Get PDF
    The application of the Global Positioning System (GPS) for navigation of spacecraft in High and Geosynchronous Earth Orbit (HEO/GEO) has crossed a threshold and is now being employed in operational missions. Utilizing advanced GPS receivers optimized for these missions, space users have made extensive use of the sidelobe transmissions from the GPS satellites to realize navigation performance that far exceeds that predicted by pre-launch simulations. Unfortunately, the official specification for the GPS Space Service Volume (SSV), developed in 2006, assumes that only signals emanating from the main beam of the GPS transmit antenna are useful for navigation, which greatly under-estimates the number of signals available for navigation purposes. As a result, future high-altitude space users may be vulnerable to any GPS design changes that suppress the sidelobe transmissions, beginning with Block III space vehicles (SVs) 11-32. This paper presents proposed changes to the GPS system SSV requirements, as informed by data from recent experiments in the SSV and new mission applications that are enabled by GPS navigation in HEO/GEO regimes. The NASA/NOAA GOES-R series satellites are highlighted as an example of a mission that relies on this currently-unspecified GPS system performance to meet mission requirements

    Characterization of On-Orbit GPS Transmit Antenna Patterns for Space Users

    Get PDF
    The GPS Antenna Characterization Experiment (GPS ACE) has made extensive observations of GPS L1 signals received at geosynchronous (GEO) altitude, with the objective of developing comprehensive models of the signal levels and signal performance in the GPS transmit antenna side lobes. The experiment was originally motivated by the fact that data on the characteristics and performance of the GPS signals available in GEO and other high Earth orbits was limited. The lack of knowledge of the power and accuracy of the side lobe signals on-orbit added risk to missions seeking to employ the side lobes to meet navigation requirements or improve performance. The GPS ACE Project lled that knowledge gap through a collaboration between The Aerospace Corporation and NASA Goddard Space Fight Center to collect and analyze observations from GPS side lobe transmissions to a satellite at GEO using a highly-sensitive GPS receiver installed at the ground station. The GPS ACE architecture has been in place collecting observations of the GPS constellation with extreme sensitivity for several years. This sensitivity combined with around-the-clock, all-in-view processing enabled full azimuthal coverage of the GPS transmit gain patterns over time to angles beyond 90 degrees off-boresight. Results discussed in this paper include the reconstructed transmit gain patterns, with comparisons to available pre-fight gain measurements from the GPS vehicle contractors. For GPS blocks with extensive ground measurements, the GPS ACE results show remarkable agreement with ground based measurements. For blocks without extensive ground measurements, the GPS ACE results provide the only existing assessments of the full transmit gain patterns. The paper also includes results of pseudorange deviation analysis to assess systematic errors associated with GPS side lobe signals

    B-Type Natriuretic Peptide in Pregnant Women With Heart Disease

    Get PDF
    ObjectivesThe objectives of this study were to examine: 1) B-type natriuretic peptide (BNP) response to pregnancy in women with heart disease; and 2) the relationship between BNP levels and adverse maternal cardiac events during pregnancy.BackgroundPregnancy imposes a hemodynamic stress on the heart. BNP might be a useful biomarker to assess the ability of the heart to adapt to the hemodynamic load of pregnancy.MethodsThis was a prospective study of women with structural heart disease seen at our center. Serial clinical data and plasma BNP measurements were obtained during the first trimester, third trimester, and after delivery (>6 weeks).ResultsSeventy-eight pregnant women were studied; 66 women with heart disease (age 31 ± 5 years), and 12 healthy women (age 33 ± 5 years). During pregnancy, the median peak BNP level was higher in women with heart disease compared with control subjects (median 79, interquartile range 51 to 152 pg/ml vs. median 35, interquartile range 21 to 43 pg/ml, p < 0.001). In women with heart disease, those with subaortic ventricular dysfunction had higher BNP levels (p = 0.03). A BNP >100 pg/ml was measured in all women with events during pregnancy (n = 8). Sixteen women had increased BNP levels during pregnancy but did not have clinical events. None of the women with BNP ≤100 pg/ml had events. BNP ≤100 pg/ml had a negative predictive value of 100% for identifying events during pregnancy.ConclusionsMany pregnant women with heart disease have increased BNP levels during pregnancy. Incorporating serial BNP levels in into clinical practice can be helpful, specifically in adjudicating suspected adverse cardiac events during pregnancy

    Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement

    Get PDF
    Cytoskeletal microtubules have been proposed to influence cell shape and mechanics based on their ability to resist large-scale compressive forces exerted by the surrounding contractile cytoskeleton. Consistent with this, cytoplasmic microtubules are often highly curved and appear buckled because of compressive loads. However, the results of in vitro studies suggest that microtubules should buckle at much larger length scales, withstanding only exceedingly small compressive forces. This discrepancy calls into question the structural role of microtubules, and highlights our lack of quantitative knowledge of the magnitude of the forces they experience and can withstand in living cells. We show that intracellular microtubules do bear large-scale compressive loads from a variety of physiological forces, but their buckling wavelength is reduced significantly because of mechanical coupling to the surrounding elastic cytoskeleton. We quantitatively explain this behavior, and show that this coupling dramatically increases the compressive forces that microtubules can sustain, suggesting they can make a more significant structural contribution to the mechanical behavior of the cell than previously thought possible

    Preformed CD40L Is Stored in Th1, Th2, Th17, and T Follicular Helper Cells as Well as CD4+8− Thymocytes and Invariant NKT Cells but Not in Treg Cells

    Get PDF
    CD40L is essential for the development of adaptive immune responses. It is generally thought that CD40L expression in CD4+ T cells is regulated transcriptionally and made from new mRNA following antigen recognition. However, imaging studies show that the majority of cognate interactions between effector CD4+ T cells and APCs in vivo are too short to allow de novo CD40L synthesis. We previously showed that Th1 effector and memory cells store preformed CD40L (pCD40L) in lysosomal compartments and mobilize it onto the plasma membrane immediately after antigenic stimulation, suggesting that primed CD4+ T cells may use pCD40L to activate APCs during brief encounters. Indeed, our recent study showed that pCD40L is sufficient to mediate selective activation of cognate B cells and trigger DC activation in vitro. In this study, we show that pCD40L is present in Th1 and follicular helper T cells developed during infection with lymphocytic choriomeningitis virus, Th2 cells in the airway of asthmatic mice, and Th17 cells from the CNS of animals with experimental autoimmune encephalitis (EAE). pCD40L is nearly absent in both natural and induced Treg cells, even in the presence of intense inflammation such as occurs in EAE. We also found pCD40L expression in CD4 single positive thymocytes and invariant NKT cells. Together, these results suggest that pCD40L may function in T cell development as well as an unexpectedly broad spectrum of innate and adaptive immune responses, while its expression in Treg cells is repressed to avoid compromising their suppressive activity

    Use and Protection of GPS Sidelobe Signals for Enhanced Navigation Performance in High Earth Orbit

    Get PDF
    GPS (Global Positioning System) Space Service Volume (SSV) signal environment is from 3,000-36,000 kilometers altitude. Current SSV specifications only capture performance provided by signals transmitted within 23.5(L1) or 26(L2-L5) off-nadir angle. Recent on-orbit data lessons learned show significant PNT (Positioning, Navigation and Timing) performance improvements when the full aggregate signal is used. Numerous military civil operational missions in High Geosynchronous Earth Orbit (HEOGEO) utilize the full signal to enhance vehicle PNT performanc
    corecore