159 research outputs found

    Vascular endothelial growth factor receptor 3 signaling contributes to angioobliterative pulmonary hypertension

    Get PDF
    The mechanisms involved in the development of severe angioobliterative pulmonary arterial hypertension (PAH) are multicellular and complex. Many of the features of human severe PAH, including angioobliteration, lung perivascular inflammation, and right heart failure, are reproduced in the Sugen 5416/chronic hypoxia (SuHx) rat model. Here we address, at first glance, the confusing and paradoxical aspect of the model, namely, that treatment of rats with the antiangiogenic vascular endothelial growth factor (VEGF) receptor 1 and 2 kinase inhibitor, Sugen 5416, when combined with chronic hypoxia, causes angioproliferative pulmonary vascular disease. We postulated that signaling through the unblocked VEGF receptor VEGFR3 (or flt4) could account for some of the pulmonary arteriolar lumen-occluding cell growth. We also considered that Sugen 5416-induced VEGFR1 and VEGFR2 blockade could alter the expression pattern of VEGF isoform proteins. Indeed, in the lungs of SuHx rats we found increased expression of the ligand proteins VEGF-C and VEGF-D as well as enhanced expression of the VEGFR3 protein. In contrast, in the failing right ventricle of SuHx rats there was a profound decrease in the expression of VEGF-B and VEGF-D in addition to the previously described reduction in VEGF-A expression. MAZ51, an inhibitor of VEGFR3 phosphorylation and VEGFR3 signaling, largely prevented the development of angioobliteration in the SuHx model; however, obliterated vessels did not reopen when animals with established PAH were treated with the VEGFR3 inhibitor. Part of the mechanism of vasoobliteration in the SuHx model occurs via VEGFR3. VEGFR1/VEGFR2 inhibition can be initially antiangiogenic by inducing lung vessel endothelial cell apoptosis; however, it can be subsequently angiogenic via VEGF-C and VEGF-D signaling through VEGFR3

    The Science Case for an Extended Spitzer Mission

    Full text link
    Although the final observations of the Spitzer Warm Mission are currently scheduled for March 2019, it can continue operations through the end of the decade with no loss of photometric precision. As we will show, there is a strong science case for extending the current Warm Mission to December 2020. Spitzer has already made major impacts in the fields of exoplanets (including microlensing events), characterizing near Earth objects, enhancing our knowledge of nearby stars and brown dwarfs, understanding the properties and structure of our Milky Way galaxy, and deep wide-field extragalactic surveys to study galaxy birth and evolution. By extending Spitzer through 2020, it can continue to make ground-breaking discoveries in those fields, and provide crucial support to the NASA flagship missions JWST and WFIRST, as well as the upcoming TESS mission, and it will complement ground-based observations by LSST and the new large telescopes of the next decade. This scientific program addresses NASA's Science Mission Directive's objectives in astrophysics, which include discovering how the universe works, exploring how it began and evolved, and searching for life on planets around other stars.Comment: 75 pages. See page 3 for Table of Contents and page 4 for Executive Summar

    Placental syncytiotrophoblast constitutes a major barrier to vertical transmission of Listeria monocytogenes.

    Get PDF
    Listeria monocytogenes is an important cause of maternal-fetal infections and serves as a model organism to study these important but poorly understood events. L. monocytogenes can infect non-phagocytic cells by two means: direct invasion and cell-to-cell spread. The relative contribution of each method to placental infection is controversial, as is the anatomical site of invasion. Here, we report for the first time the use of first trimester placental organ cultures to quantitatively analyze L. monocytogenes infection of the human placenta. Contrary to previous reports, we found that the syncytiotrophoblast, which constitutes most of the placental surface and is bathed in maternal blood, was highly resistant to L. monocytogenes infection by either internalin-mediated invasion or cell-to-cell spread. Instead, extravillous cytotrophoblasts-which anchor the placenta in the decidua (uterine lining) and abundantly express E-cadherin-served as the primary portal of entry for L. monocytogenes from both extracellular and intracellular compartments. Subsequent bacterial dissemination to the villous stroma, where fetal capillaries are found, was hampered by further cellular and histological barriers. Our study suggests the placenta has evolved multiple mechanisms to resist pathogen infection, especially from maternal blood. These findings provide a novel explanation why almost all placental pathogens have intracellular life cycles: they may need maternal cells to reach the decidua and infect the placenta

    Operationalizing marketable blue carbon

    Get PDF
    The global carbon sequestration and avoided emissions potentially achieved via blue carbon is high (∼3% of annual global greenhouse gas emissions); however, it is limited by multidisciplinary and interacting uncertainties spanning the social, governance, financial, and technological dimensions. We compiled a transdisciplinary team of experts to elucidate these challenges and identify a way forward. Key actions to enhance blue carbon as a natural climate solution include improving policy and legal arrangements to ensure equitable sharing of benefits; improving stewardship by incorporating indigenous knowledge and values; clarifying property rights; improving financial approaches and accounting tools to incorporate co-benefits; developing technological solutions for measuring blue carbon sequestration at low cost; and resolving knowledge gaps regarding blue carbon cycles. Implementing these actions and operationalizing blue carbon will achieve measurable changes to atmospheric greenhouse gas concentrations, provide multiple co-benefits, and address national obligations associated with international agreements

    Prenatal Stress Exposure Related to Maternal Bereavement and Risk of Childhood Overweight

    Get PDF
    BACKGROUND: It has been suggested that prenatal stress contributes to the risk of obesity later in life. In a population-based cohort study, we examined whether prenatal stress related to maternal bereavement during pregnancy was associated with the risk of overweight in offspring during school age. METHODOLOGY/PRINCIPAL FINDINGS: We followed 65,212 children born in Denmark from 1970-1989 who underwent health examinations from 7 to 13 years of age in public or private schools in Copenhagen. We identified 459 children as exposed to prenatal stress, defined by being born to mothers who were bereaved by death of a close family member from one year before pregnancy until birth of the child. We compared the prevalence of overweight between the exposed and the unexposed. Body mass index (BMI) values and prevalence of overweight were higher in the exposed children, but not significantly so until from 10 years of age and onwards, as compared with the unexposed children. For example, the adjusted odds ratio (OR) for overweight was 1.68 (95% confidence interval [CI] 1.08-2.61) at 12 years of age and 1.63 (95% CI 1.00-2.61) at 13 years of age. The highest ORs were observed when the death occurred in the period from 6 to 0 month before pregnancy (OR 3.31, 95% CI 1.71-6.42 at age 12, and OR 2.31, 95% CI 1.08-4.97 at age 13). CONCLUSIONS/SIGNIFICANCE: Our results suggest that severe pre-pregnancy stress is associated with an increased risk of overweight in the offspring in later childhood

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
    • …
    corecore