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OR I G I N A L R E S E A R CH

Vascular endothelial growth factor receptor 3 signaling contributes

to angioobliterative pulmonary hypertension

Ayser Al-Husseini,1 Donatas Kraskauskas,1 Eleanora Mezzaroma,2 Andrea Nordio,2

Daniela Farkas,1 Jennifer I. Drake,1 Antonio Abbate,2 Quentin Felty,3 Norbert F. Voelkel1

1Victoria Johnson Laboratory for Lung Research, Virginia Commonwealth University, Richmond, Virginia, USA; 2VCU Pauley Heart
Center, Virginia Commonwealth University, Richmond, Virginia, USA; 3Department of Environmental and Occupational Health,
Florida International University, Miami, Florida, USA

Abstract: The mechanisms involved in the development of severe angioobliterative pulmonary arterial hyper-

tension (PAH) are multicellular and complex. Many of the features of human severe PAH, including an-

gioobliteration, lung perivascular inflammation, and right heart failure, are reproduced in the Sugen 5416/

chronic hypoxia (SuHx) rat model. Here we address, at first glance, the confusing and paradoxical aspect of

the model, namely, that treatment of rats with the antiangiogenic vascular endothelial growth factor (VEGF)

receptor 1 and 2 kinase inhibitor, Sugen 5416, when combined with chronic hypoxia, causes angioproliferative

pulmonary vascular disease. We postulated that signaling through the unblocked VEGF receptor VEGFR3 (or

flt4) could account for some of the pulmonary arteriolar lumen–occluding cell growth. We also considered

that Sugen 5416–induced VEGFR1 and VEGFR2 blockade could alter the expression pattern of VEGF isoform

proteins. Indeed, in the lungs of SuHx rats we found increased expression of the ligand proteins VEGF-C and

VEGF-D as well as enhanced expression of the VEGFR3 protein. In contrast, in the failing right ventricle of

SuHx rats there was a profound decrease in the expression of VEGF-B and VEGF-D in addition to the pre-

viously described reduction in VEGF-A expression. MAZ51, an inhibitor of VEGFR3 phosphorylation and

VEGFR3 signaling, largely prevented the development of angioobliteration in the SuHx model; however,

obliterated vessels did not reopen when animals with established PAH were treated with the VEGFR3 inhibi-

tor. Part of the mechanism of vasoobliteration in the SuHx model occurs via VEGFR3. VEGFR1/VEGFR2

inhibition can be initially antiangiogenic by inducing lung vessel endothelial cell apoptosis; however, it can be

subsequently angiogenic via VEGF-C and VEGF-D signaling through VEGFR3.

Keywords: Sugen 5416, chronic hypoxia, VEGF isoforms, VEGF receptor 3, sFlt-1, MAZ51, right heart

failure, capillary rarefaction.

Pulm Circ 2015;5(1):101-116. DOI: 10.1086/679704.

INTRODUCTION

It is now well recognized that the pathobiology of severe

forms of pulmonary arterial hypertension (PAH) is driven

by a process that is multicellular and highly complex.1

Resident lung vascular cells, inflammatory cells and cells

of the immune system, bone marrow–derived cells, and

various precursor or stem cells are all potential partic-

ipants in the sequence of events leading to vascular re-

modeling; their particular and interactive roles in pulmo-

nary vascular remodeling are under active investigation

in a number of experimental models of PAH.2-6 The con-

cepts of apoptosis resistance of proliferating vascular cells1,7

and of misguided angiogenesis have now advanced the

field, and we have proposed that angioobliterative PAH is

initiated by pulmonary vascular endothelial cell apopto-

sis. However, by itself endothelial cell apoptosis is insuffi-

cient to cause severe PAH. Instead, apoptosis-resistant

cells emerge and proliferate, ultimately leading to vessel

lumen obliteration,1 perhaps aided by the weakening of a

bone morphogenetic protein receptor type 2–dependent

homeostatic control of pulmonary arteriolar wall injury-

repair mechanisms.8

To investigate these mechanisms of lung vessel injury

and repair, rat models of severe angioobliterative PAH

and right heart failure,9,10 which are based on chronic hyp-
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oxic exposure11 or immunoinsufficiency5 together—and

very paradoxically—with the administration of an antian-

giogenic vascular endothelial growth factor (VEGF) inhibi-

tor, are now being examined.8,12

This apparent paradox of antiangiogenic drug–induced

PAH can now be explained by taking into account an im-

proved understanding of the role played by VEGF in vas-

cular biology13-15 and of the mechanisms of resistance of

tumor cells to antiangiogenic drugs.16,17 Collectively, a

large number of new studies illustrate the multitude of

biological effects that are attributable to VEGF-A, its vari-

ous splice variants, and signals transmitted via several

membrane and nuclear VEGF receptors.18-24

Although it has been shown that the potent endothelial

cell growth factor VEGF and its receptor VEGFR2 (KDR)

are highly expressed in lung vascular lesions of patients

with idiopathic PAH (IPAH),25 it remains unclear whether

and how VEGF actually drives pulmonary angioprolifer-

ation in severe forms of human PAH. Certainly, the pres-

ence of elements that may participate in the pathobio-

logical processes can be demonstrated by examining tissue

samples from IPAH patients. However, such studies can-

not explain disease mechanisms; thus, these studies need

to be complemented by the interrogation of animal models

of PAH.

To begin this interrogation, we here examine the

Sugen 5416/chronic hypoxia (SuHx) rat model of severe

angioobliterative PAH and address the question whether

VEGF, in spite of the blockade of the receptors VEGFR1

and VEGFR2 by Sugen 5416, contributes to the patho-

genesis of PAH in this model. Because Sugen 5416 in-

hibits the intracellular VEGFRI and VEGFRII tyrosine

kinases, we wondered whether the lymphangiogenic and

angiogenic VEGFR3 and its ligands VEGF-C and VEGF-

D26-31 are expressed in the lungs of animals with PAH

and whether the VEGFR3 blocker MAZ5132,33 amelio-

rates the development of severe PAH in SuHx animals.

Our experiments show that a change in the VEGF iso-

form and VEGF receptor expression pattern occurs in the

lungs and hearts of SuHx-treated pulmonary hypertensive

rats and that signaling via the overexpressed VEGFR3

(flt4) contributes to the development of angioobliterative

PAH. In the SuHx rat model, severe PAH is associated

with right heart failure34 and, in contrast to the cell prolif-

eration that occludes the lung vessels, there is a right

ventricular loss of microvessels, or capillary rarefaction.

We have reported that this right ventricle (RV) capillary

rarefaction is associated with a decreased myocardial ex-

pression of VEGF-A.35 Now we show that the expression

of the VEGF-B splice variant36-38 is likewise decreased in

the tissues of failing rat RVs, further supporting the hy-

pothesis that loss of expression of angiogenesis factors

can explain the capillary rarefaction35,39 in failing RVs.34

METHODS

Animal models
All experiments were approved by the Institutional Ani-

mal Care and Use Committee of Virginia Commonwealth

University. Pulmonary hypertension was induced in male

Sprague-Dawley rats (body weight, 250 g) as follows: the

animals received a single subcutaneous injection of the

VEGF receptor tyrosine kinase inhibitor (Sugen 5416,

20 mg/kg) and were exposed to chronic hypoxia for 4 weeks

(SuHx model), as described elsewhere.11 Age- and sex-

matched rats were exposed to 10% hypoxia for 4 weeks

in the prevention studies and for 4 weeks followed by a

return to room air for 2 weeks in the intervention stud-

ies. For hypoxia-only and control animals, age- and sex-

matched rats were placed in the hypoxic chambers at

room air, consecutively, for the same period of time as the

other groups. MAZ51 (8 mg/kg; purchased from Calbio-

chem/EMD Millipore, San Diego, CA; 676492-10MG) was

dissolved in carboxymethyl cellulose and administered

subcutaneously every other day for 21 days.32 At the end

of the exposure period, each rat was anesthetized with an

intramuscular injection of ketamine/xylazine. The tho-

racic cavities were opened by midline incision, and hemo-

dynamic measurements were obtained using a 4.5-mm

conductance catheter (Millar Instruments, Houston, TX)

and the PowerLab data acquisition system (AD Instru-

ments, Colorado Springs, CO). The right lung was re-

moved and frozen in liquid nitrogen. The left lung was

inflated with 0.5% low-melting agarose at a constant pres-

sure of 25 cm of H2O, fixed in 10% formalin for 48 hours,

and used for immunohistochemistry (IHC) analysis. Right

ventricular hypertrophy was measured as the ratio of right

ventricular weight to left ventricular plus septal weight

(RV/LVþS).

Antibodies and enzyme-linked immunosorbent
assay (ELISA)
We used the following antibodies: rabbit anti-VEGF-A,

rabbit anti-VEGF-D, mouse anti-SPARC (Santa Cruz Bio-

technology, Santa Cruz, CA), rabbit anti-VEGF-B, goat

anti-VEGFR2 (Abcam, Cambridge, United Kingdom), rab-

bit anti-VEGF-C, rabbit anti-VEGFR3 (Novus Biologicals,

Littleton, CO), rabbit anti-tubulin (Cell Signaling, Beverly,

MA), and mouse anti-β-actin (Sigma, St. Louis, MO). The

ELISA for measuring rat sFlt-1 was purchased from My-

biosource (San Diego, CA; MBS007319).
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Western blot analysis
Whole-cell lysate from one lobe of the right lung was pre-

pared using radioimmunoprecipitation assay buffer (Sigma),

and the protein concentration was determined using the

Bio-Rad Protein DC Protein Assay (Bio-Rad, Hercules, CA).

Whole cellular protein (35 μg/lane) was separated by sodium

dodecyl sulfate (SDS) polyacrylamide gel electrophoresis

with 4%–12% Bis-Tris Nupage gel (2-(N-morpholino)

ethanesulfonic acid [MES] SDS running buffer) and blot-

ted onto a polyvinylidene difluoride membrane. The mem-

brane was incubated with blocking buffer (5% nonfat dry

milk/phosphate-buffered saline [PBS] 0.1% Tween 20) at

room temperature for 1 hour. Overnight at 4°C the mem-

brane was then probed with the primary antibodies di-

luted in blocking buffer. Subsequently, membranes were

incubated with horseradish peroxidase–conjugated anti-

mouse or anti-rabbit antibody diluted 1 ∶ 5000 in blocking

buffer. Blots were developed with enhanced chemilumi-

nescence (PerkinElmer, Waltham, MA) on GeneMate Blue

Basic Autorad Films (BioExpress, Kaysville, UT). Blots were

scanned and densitometry analysis was performed using

ImageJ (National Institutes of Health, Bethesda, MD;

http://imagej.nih.gov/ij/).

Statistical analysis
Data are presented as mean � SEM. Two groups were

compared with the two-tailed unpaired Student’s t test,
and more than two groups were compared with one-way

analysis of variance followed by the Neuman-Keuls mul-

tiple comparison test. Statistical tests were performed

and graphs were created with GraphPad Prism (ver. 5.0;

GraphPad Software, San Diego, CA). Differences with

P < 0.05 were considered significant.

Histology and microscopy
Lung tissue sections (4-μm paraffin sections) were used

for staining; slides were incubated overnight with anti-

VEGF-C rabbit antibody (1 ∶ 50 dilution) and anti-VEGFR3

rabbit antibody (1 ∶ 50 dilution). For counting the number

of VEGFR3þ luminal vascular cells, 10 random pulmo-

nary arteries per tissue section stained with the anti-

VEGFR3 antibody were captured at �40 magnification,

and then the number of VEGFR3þ cells in the lumen of

pulmonary vessels was counted.

For immunofluorescence (IF) and IHC stainings, 3-μm
sections were rehydrated, which was followed by antigen

retrieval with heat in citrate buffer (pH 6.0) for 20 min.

Then, sections were blocked with 1% normal sheep se-

rum (NSS)/PBS for 15 min and incubated with primary

antibody 1 in 1% NSS in PBS overnight at 4°C. Sections

were then incubated with secondary antibody 1 in PBS

for 4 hours. For double IF staining, additional sequential

incubations were performed with primary and secondary

antibody 2 similar to 1. Finally, the sections were coun-

terstained with 4′,6-diamidino-2-phenylindole (DAPI) at

1 ∶ 20,000 for 5 minutes and mounted in SlowFade Gold

(both Life Technologies/Invitrogen, Carlsbad, CA). For all

IHC and IF stainings, controls with unspecific immuno-

globulin G were run in parallel with each staining batch

and treatment group.

Assessment of angioproliferative vascular lesions,
perivascular inflammation, and the bronchus-
associated lymphoid tissue (BALT) area
A quantitative analysis of luminal obstruction was con-

ducted first by taking 10 random images per lung section

from each rat and then counting the small pulmonary

arteries (external diameter, <50 um), performed by two

investigators blinded to treatment group. Vessels were

assessed to grade for angioobliteration from two random

left lung slices: no evidence of angioproliferation (open),

partially obliterated (<50%), and full-luminal occlusion

(obliterated).

For the purpose of assessing perivascular inflamma-

tion, fields were selected as described for the determina-

tion of the number of obliterated vessels. The perivascular

infiltrate surrounding each pulmonary artery was quan-

tified as follows: 0: absent, 1: minimal with a single layer

clustering of inflammatory cells; 2: moderate, with local-

ized clustering of inflammatory cells; and 3: abundant,

with large clusters of inflammatory cells extending from

the perivascular region toward adjacent alveoli. The final

inflammatory score was the result of the following: [0 � n
vessels with 0 score þ 1 � n vessels with score of 1 þ 2 �
n vessels with score of 2 þ 3 � n vessels with score of

3]/number of analyzed vessels, as described elsewhere;40

100 � 36 vessels were examined per lung.

The BALT area was measured by analyzing 10 sections

per group using AxioVision software (Zeiss, Oberkochen,

Germany); an outline was drawn by manual placement

and measured by planimetry.

RNA isolation
Total RNA was isolated from ∼30 mg of snap-frozen rat

heart and lung tissue using the Qiagen RNeasy Mini Kit

(Qiagen, Valencia, CA). Tissues were homogenized with

Buffer RLT and β-mercaptoethanol in an MP FastPrep-

24 Lysing Matrix D tube (MP Biomedicals, Solon, OH),

and RNA was isolated and purified in accordance with

the manufacturer’s protocol. Concentration of RNA was
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calculated with a NanoDrop ND-1000 spectrophotometer

(Thermo Fisher Scientific, Wilmington, DE). All samples

had an A260/A280 ratio between 1.9 and 2.1.

Microarray analysis
The amplification and hybridization process was as fol-

lows: 500 ng of total RNA was amplified and labeled with

cyanine 5 (Cy5) and 500 ng of universal rat reference

RNA (Stratagene, Santa Clara, CA) was amplified and la-

beled with cyanine 3 (Cy3) using the Agilent QuickAmp

Labeling Kit (Agilent Technologies, Santa Clara, CA) to

produce labeled complementary RNA (cRNA) in accor-

dance with the manufacturer’s protocol. After amplifica-

tion and labeling, the dye incorporation was determined

with a NanoDrop ND-1000 spectrophotometer (Thermo

Fisher Scientific). All ratios were>8.0 pmol dye/μg cRNA,

per the manufacturer’s recommendation. We combined

825 ng of sample and 825 ng of reference RNA and in-

cubated that with an Agilent whole-rat genome 4 � 44k

microarray slide (Agilent Technologies, Wilmington, DE)

for 17 hours at 65°C. After hybridization, slides were washed
in accordance with the manufacturer’s protocol and scanned

with an Axon GenePix 4200A scanner (Axon Instruments,

Union City, CA) at a resolution of 5 μM.

Raw expression data files were uploaded into R (R De-

velopment Core Team, Vienna, Austria) and normalized

with the marray package41 by means of the Lowess normal-

ization algorithm and then exported to BRB-ArrayTools.

Lowess intensity-dependent normalization was used to ad-

just for differences in labeling intensities of the Cy3 and

Cy5 dyes. The adjusting factor varied over intensity lev-

els.42 Statistical analysis of biological replicates was per-

formed using the significance analysis of microarrays algo-

rithm43 with a two-class paired-unpaired design (control

lung vs. SuHx lung) and median centering to identify dif-

ferentially expressed genes. The Δ value was chosen to

give an acceptable false discovery rate of <5%.

VEGF polymerase chain reaction (PCR) array
Rat VEGF RT2 Profiler PCR Arrays were used to ana-

lyze gene expression changes. Arrays and RT2 Real-Time

SyBR Green/ROX PCR Mix were purchased from Super-

Array Bioscience (Frederick, MD). PCR was performed on

a Stratagene Mx3000P instrument (Stratagene, La Jolla,

CA), in accordance with the manufacturer’s instructions.

Lung samples from two normal and two SuHx rats were

compared. For data analysis, the ΔΔCt method was used

with the aid of a Microsoft Excel spreadsheet containing

algorithms provided by the manufacturer. Fold changes

were then calculated and reported as the SuHx/normal ratio

for each tissue type.

RESULTS

Survey of expressed VEGF isoforms and VEGF
receptors in lung and heart tissues
Because treatment of rats with the VEGFR1 and VEGFR2

receptor blocker combined with chronic hypoxia gener-

ates angioobliterative PAH that is associated with accu-

mulation of inflammatory cells, activation of inflamma-

tory cells in the lungs, and activation of inflammatory

eicosanoid mediator–generating pathways,44 we postu-

lated that the tissue expression profile of VEGF isoforms

and/or VEGF receptors would be altered because of in-

flammation or as a consequence of chronic VEGF recep-

tor blockade. Lung tissue samples harvested from SuHx

rats 4 weeks after the initiation of the experimental proto-

col were surveyed, and the expression of VEGF ligand iso-

forms was assessed by Western blotting. Although there

was no significant change in the amount of VEGF-A and

VEGF-B expression, VEGF-C and VEGF-D expression was

increased; there was also a clear increase in expression

of the VEGFR3 protein (Fig. 1A–1F ). Figure 1H and 1J
shows protein expression levels measured by ELISA of

the antiangiogenic sFlt-1 in the lungs and serum, respec-

tively, in which we found a significant reduction in lung

tissue samples from SuHx rats and a trend toward an in-

crease in serum from SuHx rats versus controls that did

not reach statistical significance.

To contrast the lung tissue expression with the expres-

sion profile of the dysfunctional RV, we assessed protein

expression in RV tissue samples from SuHx rats, again

using Western blotting. We found a significant reduction

in the expressed VEGF-A protein, confirming previous

results.35 A new finding was a reduction in the expressed

VEGF-B and VEGF-D proteins, which was not shared by

the RV tissues obtained from chronically hypoxic rats,

while the expression of VEGF-C trended toward a de-

crease in the RV tissue samples from SuHx rats without

reaching statistical significance (Fig. 2A–2E ). With IHC

staining, a clear reduction in VEGF-C from RV tissue of

SuHx compared with control rats was observed (Fig. 2F ).
As for serum samples from SuHx rats, the antiangio-

genic sFlt-1 trended toward an increase in RV tissue sam-

ples compared with control animals (Fig. 2G).
To corroborate the tissue expression and localize the

expressed ligand and receptor proteins, we restricted the

remainder of our investigation to examine VEGF-C and

VEGFR3 expression in lung tissue samples. We found

expression of VEGF-C in bronchial epithelium of normal

rat lungs (Fig. 3A) but not in vascular endothelial cells.

In contrast, VEGF-C was expressed in endothelial cells

of muscularized pulmonary arterioles from SuHx rats

(Fig. 3A). The VEGFR3 protein was highly expressed in
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cells of the lymph follicles (Fig. 3B) and in some of the

vascular endothelial cells from normal lungs, hypoxic lungs,

and SuHx lungs (Fig. 3A). In SuHx lungs, the cells sur-

rounding vessel obliterating lesions and alveolar septal en-

dothelial cells expressed VEGFR3 (Fig. 3A). Many of the

lumen-obliterating cells stained highly positive 3 weeks after

the start of the SuHx protocol.

We quantified VEGFR3þ cells in and around the pul-

monary vessels in the lungs of SuHx rats and found that

the number of VEGFR3þ cells had more than doubled

by week 3 of the experimental protocol, while the num-

ber of VEGFR3þ lumen-obliterating cells was increased

at 3 weeks but not at 6 weeks (Fig. 3C ). The reason why

VEGFR3 expression of lumen-obliterating cells is transient

is not clear.

To show coexpression of VEGFR3 with the endothe-

lial cell marker (von Willebrand factor [vWF]), double im-

munofluorescence staining of VEGFR3 and vWF was done

for the lung tissue sections of control, hypoxia, and SuHx

rats (Fig. 4). There were VEFR3þ cells in and around the

lesions. In addition, there were several intimal, lumen-

facing cells that express VEGFR3 but do not express vWF.

In larger control vessels we saw some orange cells, indicat-

ing that in large vessels there are some VEGFR3þ endo-

thelial cells, and we speculate that these are precursor/

stem cells.

Microarray expression pattern of genes encoding
components of VEGF signal transduction in the
lungs of SuHx animals
The microarray gene expression pattern for normal lungs

and SuHx lungs (the animals had been killed at the end

of the Sugen plus 4-week hypoxic exposure) was analyzed

using published methodology45 and was focused on genes

encoding proteins involved in VEGF signaling, angiogene-

sis, and cell proliferation. Expressed genes were ranked ac-

cording to their fold change compared with the expression

observed in normoxic lungs. The gene encoding phospho-

lipase D (PLD) was 4.8-fold overexpressed, that encoding

early growth response 1 (Egr1) was 3.5-fold overexpressed,

Figure 1. A, Lung tissue expression of the vascular endothelial growth factor (VEGF) isoform and of VEGF receptor proteins by
Western blot analysis. There is no change in the expression of VEGF-A and VEGF-B proteins, while VEGF-C and VEGF-D are
increased in expression in Sugen 5416/chronic hypoxia (SuHx) animals (B–E ). VEGFR3 protein expression is increased when
referenced to β-actin (G). The concentration of soluble VEGFR1 (sFlt-1) in the lung tissue is reduced (H ), while the sFlt-1 levels trended
toward an increase in the serum of SuHx animals (I ). SPARC protein expression is reduced in whole-lung tissue protein extracts from
SuHx rats (J). Asterisks indicate P< 0.05. n¼ 4. Hx: hypoxia-only rats.
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that encoding endothelial cell nitric oxide synthase (eNOS)

was 2.6-fold overexpressed, and that encoding lysosomal-

associated membrane protein 3 (Lamp3) was 5.7-fold over-

expressed, while the gene encoding VEGFR2 showed sig-

nificantly reduced expression (0.15), and SPARC (secreted

protein, acidic, and rich in cysteine, also known as osteo-

nectin) expression was also reduced (0.26; Table 1). We

believe that these highly significant expression changes

are of importance in the context of angiogenesis and lung

vascular cell growth. It has been reported that VEGF stim-

ulates PLD in endothelial cells via phospholipase C,46 and

pertinently PLD and VEGFR2 are colocalized in endothe-

lial cell caveolae.47 Lamp3 was originally isolated from lung

tissue,48 and it is overexpressed in several cancers.49 Lamp3

is localized to endothelial Weibel-Palade bodies,50 and its

expression is increased by hypoxia.51

We confirmed the decreased expression of SPARC in

SuHx lungs by measuring lung tissue SPARC protein

expression (Fig. 1J ). Kupprion et al.52 have shown that

SPARC inhibits the mitogenic effect of VEGF in micro-

vascular endothelial cells, and there are multiple interac-

tions between SPARC and VEGF signaling;53,54 SPARC

is induced by VEGF in vascular endothelial cells55 and

affects wound healing in a cell type–specific fashion.56

Treatment of SuHx rats with the VEGFR3 inhibitor
MAZ51 ameliorates the severity of pulmonary
hypertension and partially prevents lumen obliteration
Treatment of SuHx rats with every-other-day dosing of

MAZ51 reduced right ventricular systolic pressure (RVSP)

without affecting RV hypertrophy (Fig. 5A, 5B). However,

the number of fully obliterated pulmonary arterioles was

Figure 2. Proteins expressed in right ventricle (RV) tissues. All vascular endothelial growth factor (VEGF) isoform proteins are
reduced in expression in the RV of Sugen 5416/chronic hypoxia (SuHx) rats (A–E ). Immunohistochemistry (magnification, �10;
scale ¼ 50 μm) shows loss of staining in the SuHx RV tissues when applying an antibody specifically directed against VEGF-C (F ).
There is only a trend toward an increased concentration of the sFlt-1 protein in the SuHx RV. Asterisks indicate P < 0.05. n ¼ 4.
Hx: hypoxia-only rats.
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Figure 3. Immunohistochemistry of lung tissue sections (magnification, �40; scale ¼ 20 μm). Vascular endothelial growth factor
(VEGF)–C protein is expressed in bronchial epithelium in normal control lungs; in lungs of chronically hypoxic rats there is faint
staining of some cells of the adventitia, while arteriolar endothelial cells express VEGF-C in the lungs of Sugen 5416/chronic
hypoxia (SuHx) rats (A). VEGFR3 protein is expressed in endothelial cells in normal, chronically hypoxic, and SuHx animals and
in macrophages. VEGFR3 expression is found in bronchus-associated lymphoid tissue in large and small pulmonary artery
endothelial cells (B ). Luminal endothelial cells in SuHx animals express VEGFR3 at 3 weeks of the study protocol but not any
longer in the lungs of animals that had received Sugen 5416 and been exposed to chronic hypoxia and killed 6 weeks after the
Sugen 5416 implantation (C ). Asterisks indicate P < 0.05. n ¼ 4. Hx: hypoxia-only rats.



significantly reduced (Fig. 5D). In addition, the amount of

perivascular cell accumulation was significantly reduced,

and the BALT trended toward reduction without reaching

statistical significance (Fig. 5E, 5F ). However, when SuHx

rats with established PAH and severe right heart dysfunc-

tion were treated with the VEGFR3 inhibitor MAZ51,32

the treatment resulted in worsening of PAH and right

ventricular hypertrophy (Fig. 6A, 6B ), and no changes

in vascular obliteration were observed when we screened

the lung sections (Fig. 6C ), suggesting that blockade of

VEGFR3 adversely affected the function of the pressure-

overloaded RV.

DISCUSSION

In severe forms of angioproliferative PAH, inflammation

and precursor stem cells cooperate in presently incom-

pletely understood mechanisms to respond to endothe-

lial cell injury and apoptosis of pulmonary microvessel

cells.6,57-60 One hypothesis attempts to address the patho-

biology of lung vascular remodeling by comparing it with

a quasi-neoplastic process or a process where the “vascu-

lar wound healing has gone awry.”1 Both of these con-

cepts emphasize a disturbance of the homeostatic balance

that otherwise maintains a normal pulmonary microvessel

structure. One important vascular growth and mainte-

nance factor is VEGF, as illustrated by the SuHx model of

severe PAH, which depends not on gene mutations but on

the actions of the antiangiogenic drug Sugen 5416. This

drug inhibits the critically important VEGF-dependent

growth and survival of endothelial cells, which the VEGF

protein transmits predominantly via VEGFR2, Akt, and

protein kinase C.21,59 While this mechanism of drug action

explains the initial endothelial cell apoptosis occurring in

the SuHx rat model,11 it does not explain the subsequent

proliferation of apoptosis-resistant endothelial cells60 or

the recently described bronchus-associated lymph follicle

formation.3,4

A recently published state-of-the-art review has dis-

cussed the SuHx model, stating that “whether VEGF in-

hibition promotes or inhibits PAH [is] creating confu-

sion.”61 Unequivocally, the combination of Sugen 5416

plus chronic hypoxia in rats causes severe PAH, and a

recent report now describes profound and complicated

signaling changes that occur in endothelial cells as a con-

sequence of prolonged VEGFR blockade.17 This publica-

tion now provides a conceptual framework for the under-

standing of the mechanisms whereby cells can escape

from antiangiogenic drug therapy.

To examine mechanisms of pulmonary microvessel pro-

liferation following chronic hypoxic exposure combined

with VEGFR1 and VEGFR2 blockade, we measured the

expressed VEGF splice variants and demonstrated in-

creased expression of the VEGFR3 protein in the lungs of

SuHx rats.62 VEGF isoforms are differentially expressed

in different organs and cells. For example, the highest

expression of VEGF-B is found in the developing myocar-

dium,36 while VEGF-C is highly expressed in lymph ves-

sels, T lymphocytes,63 and dendritic cells.64 We used West-

ern blot technology to assess the amounts of expressed

proteins and thereafter IHC to identify and localize pro-

teins in the lung tissue samples. Our data show that the

isoform pattern of VEGF and the expression of VEGFR3

is altered in the lungs of SuHx rats and that treatment

Figure 4. Double immunofluorescence staining of vascular en-
dothelial growth factor receptor 3 (VEGFR3) and von Wille-
brand factor (vWF) for lung tissue sections. Control and hypoxia
sections shows some of the endothelial cells of a medium ves-
sel >50 μm expressing VEGFR3. The section from the Su-
gen 5416/chronic hypoxia (SuHx) rat lung shows abundant
VEGFR3 expression in and around the lesion. 4′,6-Diamidino-2-
phenylindole (DAPI) was used as a nuclear counterstain. Mag-
nification, �40.
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of SuHx rats with the VEGFR3 inhibitor MAZ51 amelio-

rates the development of PAH in this model.

We recently reported increased expression of VEGFR3

and of inhibitor of differentiation 3 (ID3) in lung vascular

lesions of SuHx rats and showed in cultured endothelial

cells that Sugen 5416 increased expression of the tran-

scription factors ID3, Oct-4, and Sox-2.62 ID3 is a tran-

scription factor that is upregulated in its expression in

the pulmonary vasculature following chronic hypoxia.65

Of interest, the experimental overexpression of ID3 in

endothelial cells inhibits apoptosis and increases the ex-

pression of VEGFR3.58 Thus, these data are consistent with

the hypothesis that long-lasting Sugen 5416–triggered

VEGFR1 and VEGFR2 blockade can activate in endothelial

cells a stem cell–related cell proliferation mechanism62 that

includes VEGFR3 protein expression.

In the present experiments, we first assessed the tis-

sue protein expression of the VEGF isoforms A, B, C, and

D using specific antibodies and Western blotting, and

we found that there is no significant change in VEGF-A

and VEGF-B protein expression in the lungs of SuHx

rats, while the expression of VEGF-C and VEGF-D was

increased compared with that in control lungs and

lungs from chronically hypoxic rats (Fig. 1). In addition,

there was increased expression of the VEGFR3 protein

(Fig. 1G).26

VEGFR3 is upregulated in the microvessels of tumors

and wounds as well as in angiogenic sprouts, and it has

been demonstrated that blockade of VEGFR3 signaling

with monoclonal antibodies decreased the sprouting in

angiogenic mouse models.29 In the context of the pres-

ent investigation, it is important to point out that hyp-

oxia induces the production of VEGF-C and increases the

expression of VEGFR3 in lymphatic endothelial cells.66

VEGFR3 is expressed in macrophages56 and is activated

by binding of VEGF-C and VEGF-D. It is therefore tempt-

ing to hypothesize that the angioproliferation in the lungs

of SuHx rats may also be driven by binding of the VEGF-

C and VEGF-D isoform ligands to VEGFR3 and signal-

ing through the VEGFR3. We tested this hypothesis by

treating the SuHx animals with MAZ51, an inhibitor of

VEGFR3 (see below).32

To begin the investigation of gene expression changes

in the hypertensive SuHx lungs, we used microarray tech-

nology and focused on increased and decreased expres-

sion of genes encoding proteins involved in VEGF signal-

ing and proteins that control cell growth. Interestingly,

the Sugen 5416–induced VEGFR1/VEGFR2 blockade in

the chronically hypoxic animals resulted in a profound

downregulation of the VEGFR2 gene. To our best knowl-

edge, this is the first time it has been shown that inhibi-

tion of the VEGFR kinase results in a downregulation of

the gene encoding the VEGF receptor, suggesting a feed-

back mechanism between receptor function and receptor

gene expression. This finding was associated with down-

regulation of the SPARC gene and protein.

The diminished expression of the VEGFR2 gene in

combination with reduced SPARC expression are a mani-

festation of disturbed vascular cell homeostasis, as SPARC

can act in an antiangiogenic role by affecting signaling

through VEGFR2. Whether the overexpression of PLD re-

flects growth control signals that are routed by VEGF-C

through the VEGFR3 needs further investigation. The pat-

tern of upregulated expression of Lamp3, PLD, and eNOS

and decreased expression of SPARC is characteristic of

cancer cell growth and metastasis.48,49,51,67,68

Treating rats from the start of the SuHx protocol with

MAZ51 ameliorated the developed PH and significantly

reduced the number of obliterated pulmonary arterioles

(Fig. 5), indicating to us that the elevated tissue levels of

the isoforms VEGF-C and VEGF-D are contributing via

VEGFR3 signaling to the process of lumen obliteration

and perivascular inflammation. This VEGFR3-dependent

mechanism is well established and has been recognized

to drive lymphatic vessel growth.69 VEGF-D serum pro-

tein levels have been measured and found to be elevated

in patients with lymphangiomyomatosis,70 but VEGF-C

or VEGF-D levels have not been reported in patients with

PAH.

As shown recently, the VEGFR3 inhibitor MAZ51 re-

duced PH in the monocrotaline model of PH.4 The au-

thors treated rats with MAZ51 and demonstrated a re-

duced resistance vessel wall thickness, reduction of RV

hypertrophy, and a reduction in the mean PA pressure and

in the size of BALT in a prevention trial, but apparently

MAZ51 was less effective in a treatment trial. MAZ51, an

indolinone that blocks the ligand-induced autophospho-

rylation of VEGFR3, blocks the proliferation of VEGFR3-

expressing endothelial cells.32 Although Colvin et al.4 at-

tributed the protective effect of MAZ51 treatment in the

monocrotaline PH model to BALT size reduction and

immune modulation, it is also plausible that the drug

blocks the growth of VEGFR3-expressing endothelial cells,

in particular in the abundant presence of the ligands

VEGF-C and VEGF-D—as is the case in the SuHx model

(Fig. 1D, 1E ).
Intervention—that is, the treatment of SuHx rats with

established PAH—had no effect on the lung vessel oblit-

eration, suggesting that VEGFR3-signaling contributes to

the development of pulmonary vascular remodeling but
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Table 1. Gene expression changes in lungs of rats receiving Sugen 5416/chronic hypoxia (SuHx) treatment

Gene ID Gene symbol Description
Fold change

(SuHx/normal)

A_44_P321009 Cyp1a1 Rattus norvegicus cytochrome P450, family 1, subfamily a, polypeptide 1
(Cyp1a1), mRNA [NM_012540]

264.507

A_44_P191778 Cyp1b1 Rattus norvegicus cytochrome P450, family 1, subfamily b, polypeptide 1
(Cyp1b1), mRNA [NM_012940]

28.697

A_44_P251228 Cyp1b1 Rattus norvegicus Sprague-Dawley cytochrome P450 (CYP1B1) mRNA,
complete cds [U09540]

26.584

A_44_P304842 Tle1_predicted PREDICTED: Rattus norvegicus transducin-like enhancer of split 1,
homolog of Drosophila E(spl) (predicted) (Tle1_predicted), mRNA
[XM_342851]

8.375

A_44_P1050510 LOC686809 PREDICTED: Rattus norvegicus similar to protein 7 transactivated by
hepatitis B virus X antigen (LOC686809), mRNA [XM_001075804]

7.588

A_44_P476733 Nqo1 Rattus norvegicus NAD(P)H dehydrogenase, quinone 1 (Nqo1), mRNA
[NM_017000]

5.993

A_44_P448892 AA899841 AA899841 UI-R-E0-cq-g-01-0-UI.s2 UI-R-E0 Rattus norvegicus cDNA clone
UI-R-E0-cq-g-01-0-UI 3′ similar to gi [AA899841]

5.756

A_44_P1052324 Lamp3 Rattus norvegicus lysosomal-associated membrane protein 3 (Lamp3),
mRNA [NM_001012015]

5.723

A_44_P323430 Nme7 Rattus norvegicus nonmetastatic cells 7, protein expressed in (Nme7),
mRNA [NM_138532]

4.947

A_43_P12736 Pld2 Rattus norvegicus phospholipase D2 (Pld2), mRNA [NM_033299] 4.849

A_44_P118475 BX883043 Rattus norvegicus chromosome 20, major histocompatibility complex,
assembled from 40 BACs, strain Brown Norway (BN/ssNHsd), RT1n
haplotype; segment 2/11 [BX883043]

4.726

A_44_P452245 Serpine1 Rattus norvegicus serine (or cysteine) peptidase inhibitor, clade E, member
1 (Serpine1), mRNA [NM_012620]

4.356

A_44_P638176 LOC500152 PREDICTED: Rattus norvegicus similar to multimerin 1 (LOC500152),
mRNA [XM_001071128]

4.205

A_44_P190088 Prpf39_predicted AGENCOURT_17617267 NIH_MGC_236 Rattus norvegicus cDNA clone
IMAGE: 7128249 5′, mRNA sequence [CK472947]

3.911

A_43_P13102 Ada Rattus norvegicus adenosine deaminase (Ada), mRNA [NM_130399] 3.527

A_44_P233080 Egr1 Rattus norvegicus early growth response 1 (Egr1), mRNA [NM_012551] 3.502

A_44_P340236 Clec4a1 Rattus norvegicus C-type lectin domain family 4, member a1 (Clec4a1),
mRNA [NM_001005890]

3.438

A_44_P905727 TC628605 Q9D6B0_MOUSE (Q9D6B0) 18 days pregnant adult female placenta and
extra embryonic tissue cDNA, RIKEN full-length enriched library, clone:
3830420G05, product: G protein–coupled receptor 97, full insert
sequence, partial (13%) [TC628605]

3.367

A_44_P100565 A_44_P100565 Unknown 3.163

A_44_P368134 Sncaip_predicted PREDICTED: Rattus norvegicus synuclein, alpha interacting protein
(synphilin) (predicted) (Sncaip_predicted), mRNA [XM_225768]

3.121

A_44_P570604 DN932947 AGENCOURT_50134677 NCI_CGAP_Pr49 Rattus norvegicus cDNA clone
IMAGE: 7930540 5′, mRNA sequence [DN932947]

3.100

A_44_P279452 AA957814 UI-R-E1-fz-b-03-0-UI.s1 UI-R-E1 Rattus norvegicus cDNA clone UI-R-E1-fz-
b-03-0-UI 3′, mRNA sequence [AA957814]

2.982

A_44_P198620 Nos3 Rattus norvegicus nitric oxide synthase 3, endothelial cell (Nos3), mRNA
[NM_021838]

2.624

A_42_P538400 Ntrk2 Rattus norvegicus neurotrophic tyrosine kinase, receptor, type 2 (Ntrk2),
mRNA [NM_012731]

2.595

A_42_P812263 Sat Rattus norvegicus spermidine/spermine N1-acetyl transferase (Sat), mRNA
[NM_001007667]

2.586
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Table 1 (continued )

Gene ID Gene symbol Description
Fold change

(SuHx/normal)

A_43_P11686 Kdr Rattus norvegicus kinase insert domain protein receptor (Kdr), mRNA
[NM_013062]

0.155

A_44_P778356 Hey2 PREDICTED: Rattus norvegicus hairy [XM_344806] 0.174

A_44_P120219 AI177943 AI177943 EST221594 Normalized rat placenta, Bento Soares Rattus sp.
cDNA clone RPLCI92 3′ end, mRNA sequence [AI177943]

0.191

A_44_P527947 AA925093 UI-R-A1-ei-a-08-0-UI.s1 UI-R-A1 Rattus norvegicus cDNA clone UI-R-A1-ei-
a-08-0-UI 3′, mRNA sequence [AA925093]

0.199

A_44_P292689 Syt1 Rattus norvegicus partial mRNA for synaptotagmin 1 (syt1 gene), splice
variant 4 [AJ617619]

0.237

A_42_P817086 Scnn1b Rattus norvegicus sodium channel, nonvoltage-gated 1 beta (Scnn1b),
mRNA [NM_012648]

0.251

A_42_P683634 Sparcl1 Rattus norvegicus SPARC-like 1 (mast9, hevin) (Sparcl1), mRNA
[NM_012946]

0.260

A_44_P181094 AI600081 EST251784 Normalized rat embryo, Bento Soares Rattus sp. cDNA clone
REMDQ91 3′ end, mRNA sequence [AI600081]

0.295

A_44_P718743 TC648865 Unknown 0.298

A_44_P375102 XM_214014 Rattus norvegicus similar to mac25 (LOC289560), mRNA [XM_214014] 0.318

A_44_P240274 Emcn Rattus norvegicus endomucin (Emcn), mRNA [NM_001004228] 0.328

A_44_P752342 BF563060 UI-R-BO1-aiy-b-03-0-UI.r1 UI-R-BO1 Rattus norvegicus cDNA clone UI-R-
BO1-aiy-b-03-0-UI 5′, mRNA sequence [BF563060]

0.344

A_44_P206985 Gnrh1 Rattus norvegicus gonadotropin-releasing hormone 1 (Gnrh1), mRNA
[NM_012767]

0.346

A_44_P123492 Epb4.1l3 Rattus norvegicus erythrocyte protein band 4.1–like 3 (Epb4.1l3), mRNA
[NM_053927]

0.350

A_42_P556829 Wif1 Rattus norvegicus Wnt inhibitory factor 1 (Wif1), mRNA [NM_053738] 0.354

A_44_P229118 Muc1 Mucin 1 (fragment) [Source: Uniprot/SPTREMBL; Acc: O35770]
[ENSRNOT00000027850]

0.359

A_44_P405071 Cdk6 Cyclin-dependent kinase 6 (fragment) [Source: Uniprot/SPTREMBL; Acc:
Q99MD0] [ENSRNOT00000012597]

0.363

A_44_P937141 AW917120 AW917120 EST348424 Rat gene index, normalized rat, norvegicus, Bento
Soares Rattus norvegicus cDNA clone RGIDZ48 5′ end, mRNA sequence
[AW917120]

0.388

A_44_P607972 TC593692 Unknown 0.398

A_44_P962361 TC608677 Unknown 0.430

A_43_P12613 Apln Rattus norvegicus apelin, AGTRL1 ligand (Apln), mRNA [NM_031612] 0.459

A_42_P806859 AI229721 AI229721 EST226416 Normalized rat embryo, Bento Soares Rattus sp.
cDNA clone REMCL08 3′ end, mRNA sequence [AI229721]

0.465

A_42_P469969 Igsf10 Rattus norvegicus immunoglobulin superfamily, member 10 (Igsf10),
mRNA [NM_198768]

0.482

A_44_P983155 LOC292209 PREDICTED: Rattus norvegicus similar to GTPase activating protein
testicular GAP1 (LOC292209), mRNA [XM_238066]

0.487

A_44_P409975 Wee1 Rattus norvegicus wee1 homolog (S. pombe) (Wee1), mRNA
[NM_001012742]

0.496

Note: Validation of gene expression changes is shown for 90 genes demonstrated by quantitative polymerase chain reaction
(PCR) analysis using the SABiosciences VEGF Signaling PCR Array. Those genes with statistically significant differences between
normal and SuHx lungs are given here (n ¼ 2, P < 0.05, t test). The average fold change (SuHx/normal) is shown for the most
differentially expressed genes.
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that the lesions, when established, cannot be reversed by

VEGFR3 blockade. Whether the worsening of RVSP by

MAZ51 treatment of established PAH points toward a

supportive role of VEGFR3 signaling in the failing heart

is unclear. Whereas we cannot find any publication re-

porting on VEGFR3 signaling in the heart, our data show

a dramatic reduction in VEGF-D and VEGF-B ligands

expression in the failing SuHx rat RV and a trend toward

reduced expression of VEGF-C (Fig. 2C–2E ). Hagberg

et al.71 have reported that VEGF-B controls endothe-

lial cell fatty acid uptake, and Serpi et al.72 showed that

VEGF-B increased the growth of capillaries in rat left ven-

tricles. Our present finding of reduced VEGF-B expres-

sion in the failing SuHx rat RVs complement previously

published data that show a multilevel impairment of fatty

acid oxidation in the SuHx RV tissues.34 Indeed, reduced

fatty acid transport across cardiac endothelial cells, as a

consequence of reduced VEGF-B expression, can perhaps

be an indicator of impaired myocardial endothelial cell

function in the failing RV. While the homeostatic role of

VEGF-A in the myocardium has been well established39

and inhibition of VEGF signaling has been shown to trig-

ger myocardial hibernation,39 upregulation of the expres-

sion of soluble growth factor receptor 1 (sVEGFR1 or

sFlt-1) has been shown to prevent angiogenesis in the hy-

pertrophied myocardium.73 We found that the sFlt-1 pro-

tein concentration in the serum and RV tissues trended

toward being increased in SuHx rats (Figs. 1I, 2G). Thus,

Figure 5. Concomitant treatment of Sugen 5416/chronic hypoxia (SuHx) rats with the vascular endothelial growth factor receptor 3
(VEGFR3) blocker MAZ51 reduced right ventricular systolic pressure (RVSP; A), the number of obliterated lung arterioles (C–D),
the degree of perivascular cell accumulation (E ), and the size of the bronchoalveolar lymph cell aggregate (F ). Asterisks indicate
P < 0.05. n ¼ (4–7). Magnification, �10. Scale ¼ 50 μm. RV/LVþS: ratio of right ventricular weight to left ventricular plus septal
weight; BALT: bronchus-associated lymphoid tissue.
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the decreased expression of the ligand proteins VEGF-A,35

VEGF-B, and perhaps VEGF-D and VEGF-C, together

with high circulating levels of the antiangiogenic sFlt-1,

could all account for the capillary rarefaction of the fail-

ing SuHx rat RV and the metabolic remodeling of the RV

tissue.34 Table 2 lists the RV and lung tissue VEGF isoform

expression changes.

To summarize, the paradox that treatment of hypoxic

rats with the antiangiogenic VEGFR kinase blocker Sugen

5416 induces angioproliferation and lung vessel lumen

obliteration can in part be explained by a change in the

VEGF isoform ligand expression pattern and signaling

via VEGFR3. Both VEGF-C and VEGF-D could activate

VEGFR3 and cause endothelial cell proliferation.

This conclusion is supported by our data that demon-

strate that blockade of VEGFR3, due to treatment of rats

with MAZ51, largely prevents pulmonary angiooblitera-

tion and perivascular cell infiltration in the SuHx model

of severe PAH, while treatment of animals with estab-

lished pulmonary vascular lesions with MAZ51 does not

reopen vascular lesions but instead worsens the degree

of PAH and RV hypertrophy.

We emphasize that the roles of sFlt-1 in this model

need further investigation, in particular in view of the

reported high serum sFlt-1 levels in patients with IPAH.74

The second paradox that characterizes the SuHx rat

model is that the proliferative lung microangiopathy is

paired with the antiangiogenic environment of the fail-

ing RV.

Finally and again paradoxically, VEGF inhibition may

in the lungs both initiate endothelial cell apoptosis and

subsequently facilitate angioobliteration.We speculate that

in human forms of severe angioobliterative PAH endoge-

nous antiangiogenic factors like sFlt-1 and endoglin70

Figure 6. Treatment of animals with established Sugen 5416/chronic hypoxia (SuHx)–triggered pulmonary hypertension with the
vascular endothelial growth factor receptor 3 (VEGFR3) inhibitor MAZ51 for 2 weeks worsened the degree of pulmonary hyperten-
sion when assessed by measurement of right ventricular systolic pressure (RVSP; A). In addition to the persistence of small
arteriole occlusion, the vessels appear highly muscularized (C ). Asterisks indicate P < 0.05. n ¼ 3. Magnification, �2.5. Scale ¼
100 μm.
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may cause the initial endothelial cell death by inhibiting

VEGF-dependent cell survival and that VEGFR3-expressing

stem or progenitor cells62 may grow when the receptor is

activated by VEGF-C and/or VEGF-D.
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