40 research outputs found

    Altered Responses to Endoplasmic Reticulum Stress in Pancreatic Cancer

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) represents the fourth most common cause of cancer-associated death in the United States. Little progress has been made in understanding how proteotoxic stress affects rapidly proliferating pancreatic tumor cells. Endoplasmic reticulum (ER) stress occurs when protein homeostasis in the ER lumen is perturbed. ER stress activates the unfolded protein response (UPR) to reduce the protein load in the ER. Under conditions of moderate ER stress, the UPR promotes cell cycle arrest which allows time for successful protein load reduction and enables cell survival. However, under conditions of high levels of ER stress the UPR induces cellular apoptosis. In this dissertation, I investigated the role of endoplasmic reticulum (ER) stress and its effects on the cell cycle in pancreatic cancer cells. Activation of the unfolded protein response after ER stress induction was determined by comparing expression of key UPR mediators in non-tumorigenic pancreatic ductal cells to pancreatic cancer cells. Two arms of the UPR were assessed: eIF2α/ATF4/CHOP and IRE1α/XBP1s. Pancreatic cancer cells exhibited altered UPR activation characterized by a delay in both phosphorylation of eIF2α and induction of spliced XBP1. Further evaluation of the UPR-mediated effects on cell cycle progression revealed that pancreatic cancer cells showed a compromised ability to inhibit G1 to S phase progression after ER stress. This reduced ability to arrest proliferation was found to be due to an impaired ability to downregulate cyclin D1, a key gatekeeper of the G1/S checkpoint. Abrogation of cyclin D1 repression was mediated through a slow induction of phosphorylation of eIF2α, a critical mediator of translational attenuation in response to ER stress. In conclusion, pancreatic cancer cells demonstrate a globally compromised ability to regulate the unfolded protein response. This deficiency results in reduced cyclin D1 repression through an eIF2α-mediated mechanism. These findings indicate that pancreatic cancer cells have increased tolerance for elevated ER stress compared to normal cells, and this tolerance results in continued tumor cell proliferation under proteotoxic conditions

    Impact of cyclooxygenase inhibitors in the Women's Health Initiative hormone trials: secondary analysis of a randomized trial.

    Get PDF
    OBJECTIVES: We evaluated the hypothesis that cyclooxygenase (COX) inhibitor use might have counteracted a beneficial effect of postmenopausal hormone therapy, and account for the absence of cardioprotection in the Women's Health Initiative hormone trials. Estrogen increases COX expression, and inhibitors of COX such as nonsteroidal anti-inflammatory agents appear to increase coronary risk, raising the possibility of a clinically important interaction in the trials. DESIGN: The hormone trials were randomized, double-blind, and placebo-controlled. Use of nonsteroidal anti-inflammatory drugs was assessed at baseline and at years 1, 3, and 6. SETTING: The Women's Health Initiative hormone trials were conducted at 40 clinical sites in the United States. PARTICIPANTS: The trials enrolled 27,347 postmenopausal women, aged 50-79 y. INTERVENTIONS: We randomized 16,608 women with intact uterus to conjugated estrogens 0.625 mg with medroxyprogesterone acetate 2.5 mg daily or to placebo, and 10,739 women with prior hysterectomy to conjugated estrogens 0.625 mg daily or placebo. OUTCOME MEASURES: Myocardial infarction, coronary death, and coronary revascularization were ascertained during 5.6 y of follow-up in the estrogen plus progestin trial and 6.8 y of follow-up in the estrogen alone trial. RESULTS: Hazard ratios with 95% confidence intervals were calculated from Cox proportional hazard models stratified by COX inhibitor use. The hazard ratio for myocardial infarction/coronary death with estrogen plus progestin was 1.13 (95% confidence interval 0.68-1.89) among non-users of COX inhibitors, and 1.35 (95% confidence interval 0.86-2.10) among continuous users. The hazard ratio with estrogen alone was 0.92 (95% confidence interval 0.57-1.48) among non-users of COX inhibitors, and 1.08 (95% confidence interval 0.69-1.70) among continuous users. In a second analytic approach, hazard ratios were calculated from Cox models that included hormone trial assignment as well as a time-dependent covariate for medication use, and an interaction term. No significant interaction was identified. CONCLUSIONS: Use of COX inhibitors did not significantly affect the Women's Health Initiative hormone trial results

    Impact of cyclooxygenase inhibitors in the Women\u27s Health Initiative hormone trials: secondary analysis of a randomized trial

    Get PDF
    OBJECTIVES: We evaluated the hypothesis that cyclooxygenase (COX) inhibitor use might have counteracted a beneficial effect of postmenopausal hormone therapy, and account for the absence of cardioprotection in the Women\u27s Health Initiative hormone trials. Estrogen increases COX expression, and inhibitors of COX such as nonsteroidal anti-inflammatory agents appear to increase coronary risk, raising the possibility of a clinically important interaction in the trials. DESIGN: The hormone trials were randomized, double-blind, and placebo-controlled. Use of nonsteroidal anti-inflammatory drugs was assessed at baseline and at years 1, 3, and 6. SETTING: The Women\u27s Health Initiative hormone trials were conducted at 40 clinical sites in the United States. PARTICIPANTS: The trials enrolled 27,347 postmenopausal women, aged 50-79 y. INTERVENTIONS: We randomized 16,608 women with intact uterus to conjugated estrogens 0.625 mg with medroxyprogesterone acetate 2.5 mg daily or to placebo, and 10,739 women with prior hysterectomy to conjugated estrogens 0.625 mg daily or placebo. OUTCOME MEASURES: Myocardial infarction, coronary death, and coronary revascularization were ascertained during 5.6 y of follow-up in the estrogen plus progestin trial and 6.8 y of follow-up in the estrogen alone trial. RESULTS: Hazard ratios with 95% confidence intervals were calculated from Cox proportional hazard models stratified by COX inhibitor use. The hazard ratio for myocardial infarction/coronary death with estrogen plus progestin was 1.13 (95% confidence interval 0.68-1.89) among non-users of COX inhibitors, and 1.35 (95% confidence interval 0.86-2.10) among continuous users. The hazard ratio with estrogen alone was 0.92 (95% confidence interval 0.57-1.48) among non-users of COX inhibitors, and 1.08 (95% confidence interval 0.69-1.70) among continuous users. In a second analytic approach, hazard ratios were calculated from Cox models that included hormone trial assignment as well as a time-dependent covariate for medication use, and an interaction term. No significant interaction was identified. CONCLUSIONS: Use of COX inhibitors did not significantly affect the Women\u27s Health Initiative hormone trial results

    Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas

    Get PDF
    RNA polymerase II mediates the transcription of all protein-coding genes in eukaryotic cells, a process that is fundamental to life. Genomic mutations altering this enzyme have not previously been linked to any pathology in humans, which is a testament to its indispensable role in cell biology. On the basis of a combination of next-generation genomic analyses of 775 meningiomas, we report that recurrent somatic p.Gln403Lys or p.Leu438_His439del mutations in POLR2A, which encodes the catalytic subunit of RNA polymerase II (ref. 1), hijack this essential enzyme and drive neoplasia. POLR2A mutant tumors show dysregulation of key meningeal identity genes including WNT6 and ZIC1/ZIC4. In addition to mutations in POLR2A, NF2, SMARCB1, TRAF7, KLF4, AKT1, PIK3CA, and SMO4 we also report somatic mutations in AKT3, PIK3R1, PRKAR1A, and SUFU in meningiomas. Our results identify a role for essential transcriptional machinery in driving tumorigenesis and define mutually exclusive meningioma subgroups with distinct clinical and pathological features

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    BMAT's predictive validity for medical school performance: a retrospective cohort study

    No full text
    Although used widely, there is limited evidence of the BioMedical Admissions Test's (BMAT) predictive validity and incremental validity over prior educational attainment (PEA). We investigated BMAT's predictive and incremental validity for performance in two undergraduate medical schools, Imperial College School of Medicine (ICSM), UK, and Lee Kong Chian School of Medicine (LKCMedicine), Singapore. Our secondary goal was to compare the evidence collected with published evidence relating to comparable tools.Published versio

    The Impact of Climate Change on California Rangelands and Livestock Management

    No full text
    On a global scale, rangelands occupy approximately half of the world’s land base surface; have a critical role in carbon sequestration and biodiversity; and support a diverse and critical economy, but at the same time, are under threat by many factors, including climate change. California rangelands, which are no exception to these aforementioned characteristics, are also unique socio-ecological systems that provide a broad range of ecosystem services and support a >$3 billion annual cattle ranching industry. However, climate change both directly and indirectly poses significant challenges to the future sustainability of California rangelands and, ultimately, the management of livestock, which has important economic implications for the state’s agricultural economy. In this study, we examined the changes in overall climate exposure and climatic water deficit (CWD), which was used as a physiological plant water stress gauge, to evaluate potential impacts of climate change on various rangeland vegetation types across California. We used two downscaled global climate models, MIROC and CNRM, under the ‘business-as-usual’ emissions scenario of RCP8.5 at a mid-century time horizon of 2040–2069 and known vegetation–climate relationships. Using the models, we predicted climate change effects using metrics and spatial scales that have management relevance and that can support climate-informed decision making for livestock managers. We found that more than 80% of the area of the rangeland vegetation types considered in this study will have higher CWD by 2040–2069. We evaluated these results with beef cattle inventory data from the U.S. Department of Agriculture by county and found that, on average, 71.6% of rangelands in the top 30 counties were projected to be highly climate-stressed. We found that current proactive and reactive ranching practices such as resting pastures, reducing herd size, and rotational grazing may need to be expanded to include additional strategies for coping with declining plant productivity
    corecore