18 research outputs found

    Novel Insights Into Negative Pressure Wound Healing From an in Situ Porcine Perspective

    Get PDF
    Negative pressure wound therapy (NPWT) is used clinically to promote tissue formation and wound closure. In this study, a porcine wound model was used to further investigate the mechanisms as to how NPWT modulates wound healing via utilization of a form of NPWT called the vacuum-assisted closure. To observe the effect of NPWT more accurately, non-NPWT control wounds containing GranuFoam™ dressings, without vacuum exposure, were utilized. In situ histological analysis revealed that NPWT enhanced plasma protein adsorption throughout the GranuFoam™, resulting in increased cellular colonization and tissue ingrowth. Gram staining revealed that NPWT decreased bacterial dissemination to adjacent tissue with greater bacterial localization within the GranuFoam™. Genomic analysis demonstrated the significant changes in gene expression across a number of genes between wounds treated with non-NPWT and NPWT when compared against baseline tissue. However, minimal differences were noted between non-NPWT and NPWT wounds, including no significant differences in expression of collagen, angiogenic, or key inflammatory genes. Similarly, significant increases in immune cell populations were observed from day 0 to day 9 for both non-NPWT and NPWT wounds, though no differences were noted between non-NPWT and NPWT wounds. Furthermore, histological analysis demonstrated the presence of a foreign body response (FBR), with giant cell formation and encapsulation of GranuFoam™ particles. The unique in situ histological evaluation and genomic comparison of non-NPWT and NPWT wounds in this pilot study provided a never-before-shown perspective, offering novel insights into the physiological processes of NPWT and the potential role of a FBR in NPWT clinical outcomes

    A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants.

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.3448Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with limited therapeutic options. Here we report on a study of >12 million variants, including 163,714 directly genotyped, mostly rare, protein-altering variants. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5 × 10(-8)) distributed across 34 loci. Although wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first genetic association signal specific to wet AMD, near MMP9 (difference P value = 4.1 × 10(-10)). Very rare coding variants (frequency <0.1%) in CFH, CFI and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.We thank all participants of all the studies included for enabling this research by their participation in these studies. Computer resources for this project have been provided by the high-performance computing centers of the University of Michigan and the University of Regensburg. Group-specific acknowledgments can be found in the Supplementary Note. The Center for Inherited Diseases Research (CIDR) Program contract number is HHSN268201200008I. This and the main consortium work were predominantly funded by 1X01HG006934-01 to G.R.A. and R01 EY022310 to J.L.H

    Health and climate related ecosystem services provided by street trees in the urban environment

    Full text link

    Ectopic expression of the homeobox gene Cux-1 rescues calcineurin inhibition in mouse embryonic kidney cultures

    No full text
    Cux-1 is a murine homeobox gene structurally related to Drosophila cut. Cux-1 is highly expressed in the nephrogenic zone of the developing kidney, where its expression coincides with cell proliferation. Cux-1 functions as a transcriptional repressor of the cyclin kinase inhibitors (CKI) p21 and p27. Cux-1 DNA binding activity is negatively regulated by phosphorylation, and dephosphorylation of Cux-1 results in increased DNA binding. Transgenic mice ectopically expressing Cux-1 develop renal hyperplasia associated with the down-regulation of the CKI p27. Calcineurin A (CnA) α (-/-) mice display renal hypoplasia associated with the ectopic expression of p27. CnA is a serine/threonine phosphatase activated by intracellular calcium. Inhibiting CnA with cyclosporin A (CsA) leads to nephron deficit in rat metanephric organ cultures and apoptosis in various renal cell lines. To determine whether the ectopic expression of p27 in CnA-α -/- kidneys results from the down-regulation of Cux-1, metanephrol from embryonic Cux-1 transgenic and wild-type mice were harvested and cultured with CsA for 5 days. CsA treatment significantly inhibited growth of wild-type metanephrol. In contrast, CsA-treated Cux-1 transgenic kidney cultures were not growth inhibited, but showed high levels of cell proliferation in the nephrogenic zone. Moreover, in CsA-treated Cux-1 transgenic kidney cultures, p27 was not expressed in the nephrogenic zone, but only up-regulated in maturing glomeruli and tubules. Taken together, our results demonstrate that ectopic expression of Cux-1 can rescue the effects of CsA inhibition of CnA and suggest that Cux-1 may be regulated by calcineurin A. © 2006 Wiley-Liss, Inc

    Acceleration of polycystic kidney disease progression in cpk mice carrying a deletion in the homeodomain protein Cux1

    No full text
    Polycystic kidney diseases (PKD) are inherited as autosomal dominant (ADPKD) or autosomal recessive (ARPKD) traits and are characterized by progressive enlargement of renal cysts. Aberrant cell proliferation is a key feature in the progression of PKD. Cux1 is a homeobox gene that is related to Drosophila cut and is the murine homolog of human CDP (CCAAT Displacement Protein). Cux1 represses the cyclin kinase inhibitors p21 and p27, and transgenic mice ectopically expressing Cux1 develop renal hyperplasia. However, Cux1 transgenic mice do not develop PKD. Here, we show that a 246 amino acid deletion in Cux1 accelerates PKD progression in cpk mice. Cystic kidneys isolated from 10-day-old cpk/Cux1 double mutant mice were significantly larger than kidneys from 10-day-old cpk mice. Moreover, renal function was significantly reduced in the Cux1 mutant cpk mice, compared with cpk mice. The mutant Cux1 protein was ectopically expressed in cyst-lining cells, where expression corresponded to increased cell proliferation and apoptosis, and a decrease in expression of the cyclin kinase inhibitors p27 and p21. While the mutant Cux1 protein altered PKD progression, kidneys from mice carrying the mutant Cux1 protein alone were phenotypically normal, suggesting the Cux1 mutation modifies PKD progression in cpk mice. During cell cycle progression, Cux1 is proteolytically processed by a nuclear isoform of the cysteine protease cathepsin-L. Analysis of the deleted sequences reveals that a cathepsin-L processing site in Cux1 is deleted. Moreover, nuclear cathepsin-L is significantly reduced in both human ADPKD cells and in Pkd1 null kidneys, corresponding to increased levels of Cux1 protein in the cystic cells and kidneys. These results suggest a mechanism in which reduced Cux1 processing by cathepsin-L results in the accumulation of Cux1, downregulation of p21/p27, and increased cell proliferation in PKD
    corecore