17 research outputs found

    Taming age mortality in semi-captive Asian elephants

    Get PDF
    Understanding factors preventing populations of endangered species from being self-sustaining is vital for successful conservation, but we often lack sufficient data to understand dynamics. The global Asian elephant population has halved since the 1950s, however >25% currently live in captivity and effective management is essential to maintain viable populations. Here, we study the largest semi-captive Asian elephant population, those of the Myanma timber industry (~20% global captive population), whose population growth is heavily limited by juvenile mortality. We assess factors associated with increased mortality of calves aged 4.0–5.5 years, the taming age in Myanmar, a process affecting ~15,000 captive elephants to varying degrees worldwide. Using longitudinal survival data of 1,947 taming-aged calves spanning 43 years, we showed that calf mortality risk increased by >50% at the taming age of four, a peak not seen in previous studies on wild African elephants. Calves tamed at younger ages experienced higher mortality risk, as did calves with less experienced mothers. Taming-age survival greatly improved after 2000, tripling since the 1970’s. Management should focus on reducing risks faced by vulnerable individuals such as young and first-born calves to further improve survival. Changes associated with reduced mortality here are important targets for improving the sustainability of captive populations.</p

    Investigating changes within the handling system of the largest semi-captive population of Asian elephants

    Get PDF
    The current extinction crisis leaves us increasingly reliant on captive populations to maintain vulnerable species. Approximately one third of Asian elephants (Elephas maximus) are living in semi-captive conditions in range countries. Their relationship with humans stretches back millennia, yet elephants have never been fully domesticated. We rely on the expertise of traditional handlers (mahouts) to manage these essentially wild animals, yet this profession may be threatened in the modern day. Here, we study the handling system of semi-captive timber elephants in Myanmar; the largest global semi-captive population (similar to 5 000). We investigate how recent changes in Myanmar may have affected the keeping system and mahout-elephant interactions. Structured interviews investigated changes to mahout attitude and experience over the last two decades, as perceived by those who had worked in the industry for at least 10 years (n=23) and as evaluated in current mahouts (n=210), finding mahouts today are younger (median age 22yrs), less experienced (median experience 3yrs), and change elephants frequently, threatening traditional knowledge transfer. Mahout-elephant interactions manifested as 5 components ('job appreciation'; 'experience is necessary'; 'human-elephant interaction'; 'own knowledge'; 'elephant relationship'), according to Principal Components Analysis. Experienced mahouts and mahouts of bulls and younger elephants were more likely to agree that 'experience is necessary' to be a mahout. Mahouts with difficult elephants scored lower on 'human-elephant interaction' and a mahout's perception of their 'own knowledge' increased with more experience. Our finding of change in terms of mahout experience, age and commitment in the largest semi-captive elephant population suggests need for formal training and assessment of impacts on elephant welfare; these are findings applicable to thousands of elephants under similar management

    Handler familiarity helps to improve working performance during novel situations in semi-captive Asian elephants

    Get PDF
    Working animals spend hours each day in close contact with humans and require training to understand commands and fulfil specific tasks. However, factors driving cooperation between humans and animals are still unclear, and novel situations may present challenges that have been little-studied to-date. We investigated factors driving cooperation between humans and animals in a working context through behavioural experiments with 52 working semi-captive Asian elephants. Human-managed Asian elephants constitute approximately a third of the remaining Asian elephants in the world, the majority of which live in their range countries working alongside traditional handlers. We investigated how the familiarity and experience of the handler as well as the elephant’s age and sex affected their responses when asked to perform a basic task and to cross a novel surface. The results highlighted that when novelty is involved in a working context, an elephant’s relationship length with their handler can affect their cooperation: elephants who had worked with their handler for over a year were more willing to cross the novel surface than those who had a shorter relationship with their handler. Older animals also tended to refuse to walk on the novel surface more but the sex did not affect their responses. Our study contributes much needed knowledge on human-working animal relationships which should be considered when adjusting training methods and working habits.</p

    Evaluating the Reliability of Non-Specialist Observers in the Behavioural Assessment of Semi-Captive Asian Elephant Welfare

    Get PDF
    Recognising stress is an important component in maintaining the welfare of captive animal populations, and behavioural observation provides a rapid and non-invasive method to do this. Despite substantial testing in zoo elephants, there has been relatively little interest in the application of behavioural assessments to the much larger working populations of Asian elephants across Southeast Asia, which are managed by workers possessing a broad range of behavioural knowledge. Here, we developed a new ethogram of potential stress- and work-related behaviour for a semi-captive population of Asian elephants. We then used this to collect observations from video footage of over 100 elephants and evaluated the reliability of behavioural welfare assessments carried out by non-specialist observers. From observations carried out by different raters with no prior experience of elephant research or management, we tested the reliability of observations between-observers, to assess the general inter-observer agreement, and within-observers, to assess the consistency in behaviour identification. The majority of ethogram behaviours were highly reliable both between- and within-observers, suggesting that overall, behaviour was highly objective and could represent easily recognisable markers for behavioural assessments. Finally, we analysed the repeatability of individual elephant behaviour across behavioural contexts, demonstrating the importance of incorporating a personality element in welfare assessments. Our findings highlight the potential of non-expert observers to contribute to the reliable monitoring of Asian elephant welfare across large captive working populations, which may help to both improve elephant wellbeing and safeguard human workers.</p

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Investigating changes within the handling system of the largest semi-captive population of Asian elephants.

    No full text
    The current extinction crisis leaves us increasingly reliant on captive populations to maintain vulnerable species. Approximately one third of Asian elephants (Elephas maximus) are living in semi-captive conditions in range countries. Their relationship with humans stretches back millennia, yet elephants have never been fully domesticated. We rely on the expertise of traditional handlers (mahouts) to manage these essentially wild animals, yet this profession may be threatened in the modern day. Here, we study the handling system of semi-captive timber elephants in Myanmar; the largest global semi-captive population (~5 000). We investigate how recent changes in Myanmar may have affected the keeping system and mahout-elephant interactions. Structured interviews investigated changes to mahout attitude and experience over the last two decades, as perceived by those who had worked in the industry for at least 10 years (n = 23) and as evaluated in current mahouts (n = 210), finding mahouts today are younger (median age 22yrs), less experienced (median experience 3yrs), and change elephants frequently, threatening traditional knowledge transfer. Mahout-elephant interactions manifested as 5 components ('job appreciation'; 'experience is necessary'; 'human-elephant interaction'; 'own knowledge'; 'elephant relationship'), according to Principal Components Analysis. Experienced mahouts and mahouts of bulls and younger elephants were more likely to agree that 'experience is necessary' to be a mahout. Mahouts with difficult elephants scored lower on 'human-elephant interaction' and a mahout's perception of their 'own knowledge' increased with more experience. Our finding of change in terms of mahout experience, age and commitment in the largest semi-captive elephant population suggests need for formal training and assessment of impacts on elephant welfare; these are findings applicable to thousands of elephants under similar management

    Data from: Distinguishing between determinate and indeterminate growth in a long-lived mammal

    No full text
    Background: The growth strategy of a species influences many key aspects of its life-history. Animals can either grow indeterminately (throughout life), or grow determinately, ceasing at maturity. In mammals, continued weight gain after maturity is clearly distinguishable from continued skeletal growth (indeterminate growth). Elephants represent an interesting candidate for studying growth because of their large size, long life and sexual dimorphism. Objective measures of their weight, height and age, however, are rare. Results: We investigate evidence for indeterminate growth in the Asian elephant Elephas maximus using a longitudinal dataset from a semi-captive population. We fit growth curves to weight and height measurements, assess sex differences in growth, and test for indeterminate growth by comparing the asymptotes for height and weight curves. Our results show no evidence for indeterminate growth in the Asian elephant; neither sex increases in height throughout life, with the majority of height growth completed by the age of 15 years in females and 21 years in males. Females show a similar pattern with weight, whereas males continue to gain weight until over age 50. Neither sex shows any declines in weight with age. Conclusions: These results have implications for understanding mammalian life-history, which could include sex-specific differences in trade-offs between size and reproductive investment
    corecore