629 research outputs found

    The next stage of naval electrical engineering system testing at the Power Networks Demonstration Centre

    Get PDF
    This paper gives an overview of the Power Hardware in the Loop (PHIL) system, that is now operational at the PNDC (a University of Strathclyde Research Centre), to extend the centres capability for marine electrical system testing. In this paper, the key components of the PHIL system and their corresponding interfaces are presented; representative case studies showing typical applications for the PHIL system at the PNDC are illustrated; and the next stage of future marine power system testing (flywheel energy storage) utilising the PHIL platform is discussed. The objective of this test bed is to: facilitate integration of engineering systems into marine power system platforms; support the development of future electric ships; to de-risk the integration of the next generation of energy weapons and sensors; and to supplement and replace the need for ship demonstrators. This facility development and associated project plan involves a productive mix of industry, academia, UK MoD and US DoD. The two key components of the PHIL test bed are: (1) A Real Time Digital Simulator (RTDS) system that is capable of simulating marine electrical systems in real time; and (2) A Triphase converter, a uniquely modular solution that can be re-configured for AC and DC output, used as the link between simulation and real hardware under test. The RTDS interface with the Triphase converter system employs fibre communication to issue control commands and receive measurement feedback. The hardware to be tested, connected to the Triphase, is interfaced directly to simulation in real time. In this paper it is demonstrated how a flywheel energy storage device could be directly connected to a simulated ship power system and operated in real time. This test setup would be used to evaluate the interaction between the ship power system and flywheel. This test bed can be reconfigured for long term research and development for a multitude of ship power system solutions. The ship power system is represented in simulation which means it can be modified to represent existing or planned ship architectures. This facilitates testing of hardware planned for retrofit in existing ship power systems; and it allows future ship powers systems to be simulated and interfaced with existing hardware. Both options support reduced cost and life cycle time to develop ship power systems

    Power hardware in the loop platform for flywheel energy storage system testing for electric ship power system applications

    Get PDF
    The UK MoD and Power Networks Demonstration Centre (PNDC) have worked collaboratively to de-risk the integration of power system architecture into future and legacy naval platforms This is being achieved through the development of a 540kVA Power Hardware in the Loop (PHIL) testing facility as part of a project arrangement with the US called "The Advanced Electrical Power and Propulsion Systems Development Project." The two key components of the PHIL system are: (1) A real time digital simulator system that is capable of simulating naval electrical systems in real time; and (2) A programmable power converter, a uniquely modular solution that can be re-configured for AC and DC output, which is used as the link between simulation and real hardware under test. The PHIL testbed has been used to investigate a 360kW modular flywheel system developed by GKN. This project involved interfacing the real flywheel to a simulated ship electrical power system. This paper discusses how the PHIL test facility was configured for flywheel testing and the associated challenges, learnings and opportunities from this test setup. This paper also reports on one of the tests that was completed as part of this test program. In this test the FESS is operating in real time connected to a ship power system simulation. The results reported in this paper are particularly significant in that they demonstrate how a real piece of hardware can be tested as part of a ship power system without the need for a full ship demonstrator. This form of testing supports rapid resolution of hardware to ship integration challenges, control methodologies, and power system management schemes for de-risking new systems. This testing is prior to the hardware being connected to any potential full-scale shore based ship demonstrator or being installed directly on-board a ship power system where it could adversely impact ship operation

    Lung cancer screening program factors that influence psychosocial outcomes: A systematic review.

    Get PDF
    OBJECTIVES: Lung cancer screening (LCS) programs are being designed and implemented globally. Early data suggests that the psychosocial impacts of LCS are influenced by program factors, but evidence synthesis is needed. This systematic review aimed to elucidate the impact of service-level factors on psychosocial outcomes to inform optimal LCS program design and future implementation. METHODS: Four databases were searched from inception to July 2023. Inclusion criteria were full-text articles published in English that reported an association between any program factors and psychosocial outcomes experienced during LCS. Study quality was appraised, and findings were synthesised narratively. RESULTS: Thirty-two articles were included; 29 studies were assessed at high or moderate risk of bias. Study designs were RCT (n = 3), pre-post (n = 6), cross-sectional (n = 12), mixed-methods (n = 1), and qualitative (n = 10) studies, and conducted primarily in the USA (n = 25). Findings suggested that targeted interventions can improve smoking-related or decisional psychosocial outcomes (e.g., smoking cessation interventions increase readiness/motivation to quit) but impacts of interventions on other psychological outcomes were varied. There was limited evidence reporting association between service delivery components and psychological outcomes, and results suggested moderation by individual aspects (e.g., expectation of results, baseline anxiety). Opportunities for discussion were key in reducing psychological harm. CONCLUSIONS: Certain program factors are reportedly associated with psychosocial impacts of LCS, but study heterogeneity and quality necessitate more real-world studies. Future work should examine (a) implementation of targeted interventions and high-value discussion during LCS, and (b) optimal methods and timing of risk and result communication, to improve psychosocial outcomes while reducing time burden for clinicians

    Motivations, Learning and Creativity in Online Citizen Sceince Charlene Jennett, Laure Kloetzer, Daniel Schneider, Ioanna Iacovides, Anna L. Cox, Margaret Gold, Brian Fuchs, Alexandra Eveleigh, Kathleen Mathieu, Zoya Ajani and Yasmin Talsi

    Get PDF
    Online citizen science projects have demonstrated their usefulness for research, however little is known about the potential benefits for volunteers. We conducted 39 interviews (28 volunteers, 11 researchers) to gain a greater understanding of volunteers' motivations, learning and creativity (MLC). In our MLC model we explain that participating and progressing in a project community provides volunteers with many indirect opportunities for learning and creativity. The more aspects that volunteers are involved in, the more likely they are to sustain their participation in the project. These results have implications for the design and management of online citizen science projects. It is important to provide users with tools to communicate in order to supporting social learning, community building and sharing.This article is licensed under the terms of the Creative Commons Attribution - NonCommercial - NoDerivativeWorks 4.0 License. The article attached is the publisher's pdf

    Attitudes Towards End-of-Life Decisions and the Subjective Concepts of Consciousness: An Empirical Analysis

    Get PDF
    Background: People have fought for their civil rights, primarily the right to live in dignity. At present, the development of technology in medicine and healthcare led to an apparent paradox: many people are fighting for the right to die. This study was aimed at testing whether different moral principles are associated with different attitudes towards end-of-life decisions for patients with a severe brain damage. Methodology: We focused on the ethical decisions about withdrawing life-sustaining treatments in patients with severe brain damage. 202 undergraduate students at the University of Padova were given one description drawn from four profiles describing different pathological states: the permanent vegetative state, the minimally conscious state, the locked-in syndrome, and the terminal illness. Participants were asked to evaluate how dead or how alive the patient was, and how appropriate it was to satisfy the patient's desire. Principal Findings: We found that the moral principles in which people believe affect not only people's judgments concerning the appropriateness of the withdrawal of life support, but also the perception of the death status of patients with severe brain injury. In particular, we found that the supporters of the Free Choice (FC) principle perceived the death status of the patients with different pathologies differently: the more people believe in the FC, the more they perceived patients as dead in pathologies where conscious awareness is severely impaired. By contrast, participants who agree with the Sanctity of Life (SL) principle did not show differences across pathologies. Conclusions: These results may shed light on the complex aspects of moral consensus for supporting or rejecting end-of-life decisions

    Supporting the consumption and co-authoring of locative media experiences for a rural village community: design and field trial evaluation of the SHARC2.0 framework

    Get PDF
    Locative Media Experiences (LMEs) have significant potential in enabling visitors to engage with the places that they visit through an appreciation of local history. For example, a visitor to Berlin that is exploring remnants of the Berlin Wall may be encouraged to appreciate (or in part experience) the falling of the Berlin wall by consuming multimedia directly related to her current location such as listening to audio recordings of the assembled crowds on 10th November 1989. However, despite the growing popularity of enabling technologies (such as GPS-equipped smart phones and tablets), the availability of tools that support the authoring of LMEs is limited. In addition, mobile apps that support the consumption of LMEs typically adopt an approach that precludes users from being able to respond with their own multimedia contributions. In this article we describe the design and evaluation of the SHARC2.0 framework that has been developed as part of our long-term and participatory engagement with the rural village of Wray in the north of England. Wray has very limited cellular data coverage which has placed a requirement on the framework and associated tools to operate without reliance on network connectivity. A field study is presented which featured a LME relating to Wray’s local history and which contained multimedia content contributed by members of the community including historic photos (taken from an existing ‘Digital Noticeboard’ system), audio-clips (from a local historian and village residents) and video (contributed during a design workshop). The novelty of our approach relates to the ability of multiple authors to contribute to a LME in-situ, and the utilisation of personal cloud storage for storing the contents associated with a multi-authored LME

    Use of the Oxford Handicap Scale at hospital discharge to predict Glasgow Outcome Scale at 6 months in patients with traumatic brain injury

    Get PDF
    BACKGROUND: Traumatic brain injury (TBI) is an important cause of acquired disability. In evaluating the effectiveness of clinical interventions for TBI it is important to measure disability accurately. The Glasgow Outcome Scale (GOS) is the most widely used outcome measure in randomised controlled trials (RCTs) in TBI patients. However GOS measurement is generally collected at 6 months after discharge when loss to follow up could have occurred. The objectives of this study were to evaluate the association and predictive validity between a simple disability scale at hospital discharge, the Oxford Handicap Scale (OHS), and the GOS at 6 months among TBI patients. METHODS: The study was a secondary analysis of a randomised clinical trial among TBI patients (MRC CRASH Trial). A Spearman correlation was estimated to evaluate the association between the OHS and GOS. The validity of different dichotomies of the OHS for predicting GOS at 6 months was assessed by calculating sensitivity, specificity and the C statistic. Uni and multivariate logistic regression models were fitted including OHS as explanatory variable. For each model we analysed its discrimination and calibration. RESULTS: We found that the OHS is highly correlated with GOS at 6 months (spearman correlation 0.75) with evidence of a linear relationship between the two scales. The OHS dichotomy that separates patients with severe dependency or death showed the greatest discrimination (C statistic: 84.3). Among survivors at hospital discharge the OHS showed a very good discrimination (C statistic 0.78) and excellent calibration when used to predict GOS outcome at 6 months. CONCLUSION: We have shown that the OHS, a simple disability scale available at hospital discharge can predict disability accurately, according to the GOS, at 6 months. OHS could be used to improve the design and analysis of clinical trials in TBI patients and may also provide a valuable clinical tool for physicians to improve communication with patients and relatives when assessing a patient's prognosis at hospital discharge

    Performance optimisation of a flywheel energy storage system using the PNDC power hardware in the loop platform

    Get PDF
    The UK MOD has an objective to improve the efficiency and flexibility associated with the integration of naval electrical systems into both new & existing platforms. A more specific challenge for the MOD is in the de-risking of the integration of future pulse & stochastic loads such as Laser Directed Energy Weapons. To address this the Power Networks Demonstration Centre (PNDC) naval research programme is focused towards understanding & resolving the associated future power system requirements. To address these challenges, the UK MOD and the PNDC have worked collaboratively to develop a 540kVA Power Hardware in the Loop (PHIL) testing facility. For the UK MOD this supports the “UK-US Advanced Electric Power and Propulsion Project Arrangement (AEP3).” This testing facility has been used to explore the capabilities of PHIL testing and evaluate a Flywheel Energy Storage System (FESS) in a notional ship power system environment. This testing provided an opportunity to develop and further validate the capability of the PHIL platform for continued marine power system research. This paper presents on the results from PHIL testing of the FESS at PNDC, which involved both characterisation and interfacing the FESS within a simulated ship power system. The characterisation tests involved evaluating the: response to step changes in current reference; frequency and impedance characteristics; and response during uncontrolled discharge. The ship power system testing involved interfacing the FESS to a simulated real time notional ship power system model and evaluating the response of the FESS and the impact on the ship power system under a range of different operational scenarios. This paper also discuss the links between FESS characterisation testing and the development of the energy management system implemented in the real time model. This control system was developed to schedule operation of the FESS state (charging, discharging and idle) with the other simulated generation sources (the active front end and battery storage) and with the loads within the ship power system model. Finally, this paper highlights how the testing at PNDC has also supported the comparison and validation of previous FESS testing at Florida State University’s Centre Advanced Power Systems (FSU CAPS) facility, and how the combined efforts help to collectively de-risk future load Total Ship Integration and Evolving Intelligent Platforms in both UK and US programmes via the AEP3 PA
    corecore