288 research outputs found

    easyDAS: Automatic creation of DAS servers

    Get PDF
    Background: The Distributed Annotation System (DAS) has proven to be a successful way to publish and share biological data. Although there are more than 750 active registered servers from around 50 organizations, setting up a DAS server comprises a fair amount of work, making it difficult for many research groups to share their biological annotations. Given the clear advantage that the generalized sharing of relevant biological data is for the research community it would be desirable to facilitate the sharing process. Results: Here we present easyDAS, a web-based system enabling anyone to publish biological annotations with just some clicks. The system, available at http://www.ebi.ac.uk/panda-srv/easydas is capable of reading different standard data file formats, process the data and create a new publicly available DAS source in a completely automated way. The created sources are hosted on the EBI systems and can take advantage of its high storage capacity and network connection, freeing the data provider from any network management work. easyDAS is an open source project under the GNU LGPL license. Conclusions: easyDAS is an automated DAS source creation system which can help many researchers in sharing their biological data, potentially increasing the amount of relevant biological data available to the scientific community.Postprint (published version

    Combining random forest and 2D correlation analysis to identify serum spectral signatures for neuro-oncology

    Get PDF
    Fourier transform infrared (FTIR) spectroscopy has long been established as an analytical tech- nique for the measurement of vibrational modes of molecular systems. More recently, FTIR has been used for the analysis of biofluids with the aim of becoming a tool to aid diagnosis. For the clinician, this represents a convenient, fast, non-subjective option for the study of biofluids and the diagnosis of disease states. The patient also benefits from this method, as the procedure for the collection of serum is much less invasive and stressful than traditional biopsy. This is especially true of patients in whom brain cancer is suspected. A brain biopsy carries a degree of morbidity and mortality and on occasion may even be inconclusive. We therefore present a method for the diagnosis of brain cancer from serum samples using FTIR and machine learning techniques. The scope of the study involved 433 patients from whom were collected 9 spectra each in the range 600-4000 cm−1. To begin development of the novel method, various pre-processing steps were investigated and ranked in terms of final accuracy of the diagnosis. Random Forest machine learning was utilised as a classifier to separate patients into cancer or non-cancer categories based upon the intensities of wavenumbers present in their spectra. Generalised 2D correlational analysis was then employed to further augment the machine learning, and also to establish spec- tral features important for the distinction between cancer and non-cancer serum samples. Using these methods, sensitivities of up to 92.8% and specificities of up to 91.5% were possible. Fur- thermore, ratiometrics were also investigated in order to establish any correlations present in the dataset. We show a rapid, computationally light, accurate, statistically robust methodology for the identification of spectral features present in differing disease states. With current advances in IR technology, such as the development of rapid discrete frequency collection, this approach is import to allow future clinical translation and enables IR to achieve its potential

    A novel pyrazolopyrimidine ligand of human PGK1 and stress sensor DJ1 modulates the shelterin complex and telomere length regulation

    Get PDF
    Telomere signaling and metabolic dysfunction are hallmarks of cell aging. New agents targeting these processes might provide therapeutic opportunities, including chemoprevention strategies against cancer predisposition. We report identification and characterization of a pyrazolopyrimidine compound series identified from screens focused on cell immortality and whose targets are glycolytic kinase PGK1 and oxidative stress sensor DJ1. We performed structure–activity studies on the series to develop a photoaffinity probe to deconvolute the cellular targets. In vitro binding and structural analyses confirmed these targets, suggesting that PGK1/DJ1 interact, which we confirmed by immunoprecipitation. Glucose homeostasis and oxidative stress are linked to telomere signaling and exemplar compound CRT0063465 blocked hypoglycemic telomere shortening. Intriguingly, PGK1 and DJ1 bind to TRF2 and telomeric DNA. Compound treatment modulates these interactions and also affects Shelterin complex composition, while conferring cellular protection from cytotoxicity due to bleomycin and desferroxamine. These results demonstrate therapeutic potential of the compound series

    MyDas, an extensible Java DAS server

    Get PDF
    A large number of diverse, complex, and distributed data resources are currently available in the Bioinformatics domain. The pace of discovery and the diversity of information means that centralised reference databases like UniProt and Ensembl cannot integrate all potentially relevant information sources. From a user perspective however, centralised access to all relevant information concerning a specific query is essential. The Distributed Annotation System (DAS) defines a communication protocol to exchange annotations on genomic and protein sequences; this standardisation enables clients to retrieve data from a myriad of sources, thus offering centralised access to end-users. We introduce MyDas, a web server that facilitates the publishing of biological annotations according to the DAS specification. It deals with the common functionality requirements of making data available, while also providing an extension mechanism in order to implement the specifics of data store interaction. MyDas allows the user to define where the required information is located along with its structure, and is then responsible for the communication protocol details

    An Australian longitudinal pilot study examining health determinants of cardiac outcomes 12 months post percutaneous coronary intervention

    Get PDF
    Background Percutaneous coronary intervention (PCI) is a very common revascularisation procedure for coronary artery disease (CAD). The purpose of this study was to evaluate cardiac outcomes, health related quality of life (HRQoL), resilience and adherence behaviours in patients who have undergone a PCI at two time points (6 and 12 months) following their procedure. Methods A longitudinal pilot study was conducted to observe the cardiac outcomes across a cohort of patients who had undergone a percutaneous coronary intervention (PCI). Participants who had undergone PCI 6 months prior were invited. Those participants who met the inclusion criteria and provided consent then completed a telephone survey (time point 1). These participants were then contacted 6 months later (i.e. 12 months post-intervention, time point 2) and the measures were repeated. Results All patients (n = 51) were recorded as being alive at time point 1. The multiple model indicated that controlling for other factors, gender was significantly associated with a linear combination of outcome measures (p = 0.004). The effect was moderate in magnitude (partial-η2 = 0.303), where males performed significantly better than females 6 months after the PCI procedure physically and with mood. Follow-up univariate ANOVAs indicated that gender differences were grounded in the scale measuring depression (PHQ9) (p = 0.005) and the physical component score of the short form measuring HRQoL (SF12-PCS) (p = 0.003). Thirteen patients were lost to follow-up between time points 1 and 2. One patient was confirmed to have passed away. The pattern of correlations between outcome measures at time point 2 revealed statistically significant negative correlation between the PHQ instrument and the resilience scale (CD-RISC) (r = -0.611; p < 0.001); and the physical component score of the SF-12 instrument (r = -0.437; p = 0.054). Conclusions Men were performing better than women in the 6 months post-PCI, particularly in the areas of mood (depression) and physical health. This pilot results indicate gender-sensitive practices are recommended particularly up to 6 months post-PCI. Any gender differences observed at 6 month appear to disappear at 12 months post-PCI. Further research into the management of mood particularly for women post-PCI is warranted. A more detailed inquiry related to access/attendance to secondary prevention is also warranted

    Mechanisms of Cognitive Impairment in Cerebral Small Vessel Disease: Multimodal MRI Results from the St George's Cognition and Neuroimaging in Stroke (SCANS) Study.

    Get PDF
    Cerebral small vessel disease (SVD) is a common cause of vascular cognitive impairment. A number of disease features can be assessed on MRI including lacunar infarcts, T2 lesion volume, brain atrophy, and cerebral microbleeds. In addition, diffusion tensor imaging (DTI) is sensitive to disruption of white matter ultrastructure, and recently it has been suggested that additional information on the pattern of damage may be obtained from axial diffusivity, a proposed marker of axonal damage, and radial diffusivity, an indicator of demyelination. We determined the contribution of these whole brain MRI markers to cognitive impairment in SVD. Consecutive patients with lacunar stroke and confluent leukoaraiosis were recruited into the ongoing SCANS study of cognitive impairment in SVD (n = 115), and underwent neuropsychological assessment and multimodal MRI. SVD subjects displayed poor performance on tests of executive function and processing speed. In the SVD group brain volume was lower, white matter hyperintensity volume higher and all diffusion characteristics differed significantly from control subjects (n = 50). On multi-predictor analysis independent predictors of executive function in SVD were lacunar infarct count and diffusivity of normal appearing white matter on DTI. Independent predictors of processing speed were lacunar infarct count and brain atrophy. Radial diffusivity was a stronger DTI predictor than axial diffusivity, suggesting ischaemic demyelination, seen neuropathologically in SVD, may be an important predictor of cognitive impairment in SVD. Our study provides information on the mechanism of cognitive impairment in SVD

    Introducing discrete frequency infrared technology for high-throughput biofluid screening

    Get PDF
    Accurate early diagnosis is critical to patient survival, management and quality of life. Biofluids are key to early diagnosis due to their ease of collection and intimate involvement in human function. Large-scale mid-IR imaging of dried fluid deposits offers a high-throughput molecular analysis paradigm for the biomedical laboratory. The exciting advent of tuneable quantum cascade lasers allows for the collection of discrete frequency infrared data enabling clinically relevant timescales. By scanning targeted frequencies spectral quality, reproducibility and diagnostic potential can be maintained while significantly reducing acquisition time and processing requirements, sampling 16 serum spots with 0.6, 5.1 and 15% relative standard deviation (RSD) for 199, 14 and 9 discrete frequencies respectively. We use this reproducible methodology to show proof of concept rapid diagnostics; 40 unique dried liquid biopsies from brain, breast, lung and skin cancer patients were classified in 2.4 cumulative seconds against 10 non-cancer controls with accuracies of up to 90%
    corecore