7,232 research outputs found

    Catecholamines and cognition after traumatic brain injury

    Get PDF
    Cognitive problems are one of the main causes of ongoing disability after traumatic brain injury. The heterogeneity of the injuries sustained and the variability of the resulting cognitive deficits makes treating these problems difficult. Identifying the underlying pathology allows a targeted treatment approach aimed at cognitive enhancement. For example, damage to neuromodulatory neurotransmitter systems is common after traumatic brain injury and is an important cause of cognitive impairment. Here, we discuss the evidence implicating disruption of the catecholamines (dopamine and noradrenaline) and review the efficacy of catecholaminergic drugs in treating post-traumatic brain injury cognitive impairments. The response to these therapies is often variable, a likely consequence of the heterogeneous patterns of injury as well as a non-linear relationship between catecholamine levels and cognitive functions. This individual variability means that measuring the structure and function of a person’s catecholaminergic systems is likely to allow more refined therapy. Advanced structural and molecular imaging techniques offer the potential to identify disruption to the catecholaminergic systems and to provide a direct measure of catecholamine levels. In addition, measures of structural and functional connectivity can be used to identify common patterns of injury and to measure the functioning of brain ‘networks’ that are important for normal cognitive functioning. As the catecholamine systems modulate these cognitive networks, these measures could potentially be used to stratify treatment selection and monitor response to treatment in a more sophisticated manner

    Tribimaximal Mixing, Leptogenesis, and theta13

    Full text link
    We show that seesaw models based on flavor symmetries (such as A_4 and Z_7 X Z_3) which produce exact tribimaximal neutrino mixing, also imply a vanishing leptogenesis asymmetry. We show that higher order symmetry breaking corrections in these models can give a non-zero leptogenesis asymmetry and generically also give deviations from tribimaximal mixing and a non-zero theta13 >~ 10^(-2)Comment: Results generalized to include flavored leptogenesi

    Testing the adaptability of people's use of attribute frame information

    Get PDF
    The informational leakage account of attribute framing effects proposes that a communicator's choice of frame provides informational value, such that different frames are not informationally equivalent. Across five studies communicating food risks, we investigated the adaptability of communication recipients' (our participants) use of frame information by manipulating the degree to which the communicator ostensibly had a choice over how the information was framed. Within-participants framing effects were observed across all conditions of all studies. Only in Study 4 (the only study in which communicator choice was manipulated within-participants) was there any evidence for an attenuation of framing effects where the communicator was not responsible for how the information was framed. Overall, regardless of whether or not framing effects are driven by the informational value contained in a communicator's choice of frame, people show little sensitivity to situations where that choice is removed

    Ligation of protease-activated receptor 1 enhances alpha(v)beta(6) integrin-dependent TGF-beta activation and promotes acute lung injury

    Get PDF
    Activation of latent TGF-beta by the alpha(v)beta(6) integrin is a critical step in the development of acute lung injury. However, the mechanism by which a alpha(v)beta(6)-mediated TGF-beta activation is regulated has not been identified. We show that thrombin, and other agonists of protease-activated receptor 1(PAR1), activate TGF-beta in an alpha(v)beta(6) integrin-specific manner. This effect is PART specific and is mediated by RhoA and Rho kinase. Intratracheal instillation of the PART-specific peptide TFLLRN increases lung edema during high-tidal-volume ventilation, and this effect is completely inhibited by a blocking antibody against the alpha(v)beta(6) integrin. Instillation of TFLLRN during high-tidal-volume ventilation is associated with increased pulmonary TGF-beta activation; however, this is not observed in Itgb6(-/-) mice. Furthermore, Itgb6(-/-) mice are also protected from ventilator-induced lung edema. We also demonstrate that pulmonary edema and TGF-beta activity are similarly reduced in Par1(-/-) mice following bleomycin-induced lung injury. These results suggest that PART-mediated enhancement of a alpha(v)beta(6)-dependent TGF-beta activation could be one mechanism by which activation of the coagulation cascade contributes to the development of acute lung injury, and they identify PART and the alpha(v)beta(6) integrin as potential therapeutic targets in this condition

    Electron dynamics following photoionization: decoherence due to the nuclear-wave-packet width

    No full text
    The advent of attosecond techniques opens up the possibility to observe experimentally electron dynamics following ionization of molecules. Theoretical studies of pure electron dynamics at single fixed nuclear geometries in molecules have demonstrated oscillatory charge migration at a well-defined frequency but often neglecting the natural width of the nuclear wave packet. The effect on electron dynamics of the spatial delocalization of the nuclei is an outstanding question. Here, we show how the inherent distribution of nuclear geometries leads to dephasing. Using a simple analytical model, we demonstrate that the conditions for a long-lived electronic coherence are a narrow nuclear wave packet and almost parallel potential-energy surfaces of the states involved. We demonstrate with numerical simulations the decoherence of electron dynamics for two real molecular systems (paraxylene and polycyclic norbornadiene), which exhibit different decoherence time scales. To represent the quantum distribution of geometries of the nuclear wave packet, the Wigner distribution function is used. The electron dynamics decoherence result has significant implications for the interpretation of attosecond spectroscopy experiments since one no longer expects long-lived oscillations

    Secure pseudo-random linear binary sequences generators based on arithmetic polynoms

    Full text link
    We present a new approach to constructing of pseudo-random binary sequences (PRS) generators for the purpose of cryptographic data protection, secured from the perpetrator's attacks, caused by generation of masses of hardware errors and faults. The new method is based on use of linear polynomial arithmetic for the realization of systems of boolean characteristic functions of PRS' generators. "Arithmetizatio" of systems of logic formulas has allowed to apply mathematical apparatus of residue systems for multisequencing of the process of PRS generation and organizing control of computing errors, caused by hardware faults. This has guaranteed high security of PRS generator's functioning and, consequently, security of tools for cryptographic data protection based on those PRSs

    Coherent mixing of singlet and triplet states in acrolein and ketene: a computational strategy for simulating the electron-nuclear dynamics of intersystem crossing.

    Get PDF
    We present a theoretical study of intersystem crossing (ISC) in acrolein and ketene with the Ehrenfest method that can describe a superposition of singlet and triplet states. Our simulations illustrate a new mechanistic effect of ISC, namely, that a superposition of singlets and triplets yields nonadiabatic dynamics characteristic of that superposition rather than the constituent state potential energy surfaces. This effect is particularly significant in ketene, where mixing of singlet and triplet states along the approach to a singlet/singlet conical intersection occurs, with the spin-orbit coupling (SOC) remaining small throughout. In both cases, the effects require many recrossings of the singlet/triplet state crossing seam, consistent with the textbook treatment of ISC

    Tri-bimaximal Neutrino Mixing from A(4) and \theta_{13} \sim \theta_C

    Get PDF
    It is a common believe that, if the Tri-bimaximal mixing (TBM) pattern is explained by vacuum alignment in an A(4) model, only a very small reactor angle, say \theta_{13} \sim \lambda^2_C being \lambda_C \equiv \theta_C the Cabibbo angle, can be accommodated. This statement is based on the assumption that all the flavon fields acquire VEVs at a very similar scale and the departures from exact TBM arise at the same perturbation level. From the experimental point of view, however, a relatively large value \theta_{13} \sim \lambda_C is not yet excluded by present data. In this paper, we propose a Seesaw A(4) model in which the previous assumption can naturally be evaded. The aim is to describe a \theta_{13} \sim \lambda_C without conflicting with the TBM prediction for \theta_{12} which is rather close to the observed value (at \lambda^2_C level). In our model the deviation of the atmospherical angle from maximal is subject to the sum-rule: \sin ^2 \theta_{23} \approx 1/2 + \sqrt{2}/2 \sin \delta \cos \theta_{13} which is a next-to-leading order prediction of our model.Comment: 16 pages, revised, typos corrected, references adde
    • …
    corecore