993 research outputs found

    Diffusion as mixing mechanism in granular materials

    Full text link
    We present several numerical results on granular mixtures. In particular, we examine the efficiency of diffusion as a mixing mechanism in these systems. The collisions are inelastic and to compensate the energy loss, we thermalize the grains by adding a random force. Starting with a segregated system, we show that uniform agitation (heating) leads to a uniform mixture of grains of different sizes. We define a characteristic mixing time, τmix\tau_{mix}, and study theoretically and numerically its dependence on other parameters like the density. We examine a model for bidisperse systems for which we can calculate some physical quantities. We also examine the effect of a temperature gradient and demonstrate the appearance of an expected segregation.Comment: 15 eps figures, include

    Modelling laser-atom interactions in the strong field regime

    Get PDF
    We consider the ionisation of atomic hydrogen by a strong infrared field. We extend and study in more depth an existing semi-analytical model. Starting from the time-dependent Schroedinger equation in momentum space and in the velocity gauge we substitute the kernel of the non-local Coulomb potential by a sum of N separable potentials, each of them supporting one hydrogen bound state. This leads to a set of N coupled one-dimensional linear Volterra integral equations to solve. We analyze the gauge problem for the model, the different ways of generating the separable potentials and establish a clear link with the strong field approximation which turns out to be a limiting case of the present model. We calculate electron energy spectra as well as the time evolution of electron wave packets in momentum space. We compare and discuss the results obtained with the model and with the strong field approximation and examine in this context, the role of excited states.Comment: 11 pages, 5 figure

    Neutral Pion Photoproduction on Nuclei in Baryon Chiral Perturbation Theory

    Get PDF
    Threshold neutral pion photoproduction on light nuclei is studied in the framework of baryon chiral perturbation theory. We obtain a general formula for the electric dipole amplitude in the special case of neutral pion photoproduction on a nucleus. To third order in small momenta, the amplitude is a sum of 2- and 3-body interactions with no undetermined parameters. With reasonable input from the single nucleon sector, our result for neutral pion photoproduction on the deuteron is in agreement with experiment.Comment: 24 pages, 4 uuencoded postscript figures, uses LaTex and epsf.tex. Added footnote and references. Minor changes in text and forma

    Compton Scattering and the Spin Structure of the Nucleon at Low Energies

    Get PDF
    We analyze polarized Compton scattering which provides information on the spin-structure of the nucleon. For scattering processes with photon energies up to 100 MeV the spin-structure dependence can be encoded into four independent parameters-the so-called spin-polarizabilities Îłi,i=1...4\gamma_i, i=1...4 of the nucleon, which we calculate within the framework of the "small scale expansion" in SU(2) baryon chiral perturbation theory. Specific application is made to "forward" and "backward" spin- polarizabilities.Comment: 8 pages revtex file, separation between pion-pole and regular contributions detailed + minor wording changes, results and conclusions unchange

    Evidence Against Instanton Dominance of Topological Charge Fluctuations in QCD

    Get PDF
    The low-lying eigenmodes of the Dirac operator associated with typical gauge field configurations in QCD encode, among other low-energy properties, the physics behind the solution to the UA(1)U_A(1) problem (i.e. the origin of the ηâ€Č\eta' mass), the nature of spontaneous chiral symmetry breaking, and the physics of string-breaking, quark-antiquark pair production, and the OZI rule. Moreover, the space-time chiral structure of these eigenmodes reflects the space-time topological structure of the underlying gauge field. We present evidence from lattice QCD on the local chiral structure of low Dirac eigenmodes leading to the conclusion that topological charge fluctuations of the QCD vacuum are not instanton-dominated. The result supports Witten's arguments that topological charge is produced by confinement-related gauge fluctuations rather than instantons.Comment: 35 pages, 11 figure

    Double-slit interference pattern from single-slit screen and its gravitational analogues

    Full text link
    The double slit experiment (DSE) is known as an important cornerstone in the foundations of physical theories such as Quantum Mechanics and Special Relativity. A large number of different variants of it were designed and performed over the years. We perform and discuss here a new verion with the somewhat unexpected results of obtaining interference pattern from single-slit screen. This outcome, which shows that the routes of the photons through the array were changed, leads one to discuss it, using the equivalence principle, in terms of geodesics mechanics. We show using either the Brill's version of the canonical formulation of general relativity or the linearized version of it that one may find corresponding and analogous situations in the framework of general relativity.Comment: 51 pages, 12 Figures five of them contain two subfigures and thus the number of figures is 17, 1 Table. Some minor changes introduced, especially, in the reference

    Promised Land? Immigration, Religiosity, and Space in Southern California

    Get PDF
    This article looks at how immigrants and their supporters appropriate and use religious space and other public spaces for religious and socio-political purposes in Southern California. While the everyday living conditions of many immigrants, particularly the unauthorized Latino immigrants, force unto them an embodied disciplinarity that maintains spatialities of restricted citizenship, the public appropriations of space for and through religious practices allow for them -even if only momentarily -to express an embodied transgression. This practice in public space helps realize spaces of freedom and hope, however ephemerally. Potentially, these rehearsing exercises can help revert internalized disempowering subjectivities and create social empowerment. Negative stereotypes about immigrants held by the larger public can also be challenged through these spatial practices, as the public demonstrations make visible the invisible. We focus on “Posadas Without Borders” and “the New Sanctuary Movement,” considering both the role of progressive civic and religious institutions in supporting immigrants and the agency of the immigrants themselves. The theoretical analysis builds on concepts drawn from a conversation between geography and religious and theological studies. We use a triangulated methodological approach that includes observation and participant observation, content-analysis of multimedia, interviews, and intellectual advocacy for the immigrant movement. The cases discussed here show that progressive religious groups and coalitions can be important allies to progressive planners, geographers, and policy makers in advancing social and environmental justice for the disenfranchised. They also show that the theological underpinnings of such groups share a lot in common with planning epistemologies for the just city

    UV and EUV Instruments

    Full text link
    We describe telescopes and instruments that were developed and used for astronomical research in the ultraviolet (UV) and extreme ultraviolet (EUV) regions of the electromagnetic spectrum. The wavelength ranges covered by these bands are not uniquely defined. We use the following convention here: The EUV and UV span the regions ~100-912 and 912-3000 Angstroem respectively. The limitation between both ranges is a natural choice, because the hydrogen Lyman absorption edge is located at 912 Angstroem. At smaller wavelengths, astronomical sources are strongly absorbed by the interstellar medium. It also marks a technical limit, because telescopes and instruments are of different design. In the EUV range, the technology is strongly related to that utilized in X-ray astronomy, while in the UV range the instruments in many cases have their roots in optical astronomy. We will, therefore, describe the UV and EUV instruments in appropriate conciseness and refer to the respective chapters of this volume for more technical details.Comment: To appear in: Landolt-Boernstein, New Series VI/4A, Astronomy, Astrophysics, and Cosmology; Instruments and Methods, ed. J.E. Truemper, Springer-Verlag, Berlin, 201

    Al0.2Ga0.8As X-ray photodiodes for X-ray spectroscopy

    Get PDF
    Three custom-made Al0.2Ga0.8As p-i-n mesa X-ray photodiodes (200 ”m diameter, 3 ”m i layer) were electrically characterised and investigated for their response to illumination with soft X-rays from an 55Fe radioisotope X-ray source (Mn Kα = 5.9 keV; Mn KÎČ = 6.49 keV). The AlGaAs photodiodes were shown to be suitable for photon counting X-ray spectroscopy at room temperature. When coupled to a custom-made low-noise charge-sensitive preamplifier, a mean energy resolution (as quantified by the full width at half maximum of the 5.9 keV photopeak) of 1.24 keV was measured at room temperature. Parameters such as the depletion width (1.92 ”m at 10 V), charge trapping noise (61.7 e− rms ENC at 5 V, negligible at 10 V) and the electronic noise components (known dielectric noise (63.4 e− rms), series white noise (27.7 e− rms), parallel white noise (9.5 e− rms) and 1/f series noise (2.2 e− rms) at 10 V reverse bias) affecting the achieved energy resolution were computed. The estimated charge trapping noise and mean energy resolution were compared to similar materials (e.g. Al0.8Ga0.2As) previously reported, and discussed. These results are the first demonstration of photon counting X-ray spectroscopy with Al0.2Ga0.8As reported to date
    • 

    corecore