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Abstract

Threshold neutral pion photoproduction on light nuclei is studied in the frame-

work of baryon chiral perturbation theory. We obtain a general formula for the

electric dipole amplitude in the special case of neutral pion photoproduction on a

nucleus. To third order in small momenta, the amplitude is a sum of 2- and 3-body

interactions with no undetermined parameters. With reasonable input from the

single nucleon sector, our result for neutral pion photoproduction on the deuteron

is in agreement with experiment.
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1 Introduction

In recent times, there has been increasing interest in applying the method of chiral la-

grangians, or chiral perturbation theory (�PT ), to processes involving more than a single

nucleon [1-8]. This interest is motivated by the desire to determine what aspects of nu-

clear physics can be understood on the basis of the chiral symmetry of QCD. In the limit

of vanishing u and d quark masses the QCD lagrangian admits a global SU(2)L�SU(2)R
chiral symmetry. The absence of parity doubling in the hadronic spectrum implies that

this chiral symmetry is either anomalous, or spontaneously broken by the QCD vacuum.

The existence of suitable Goldstone boson candidates, the pions, bears out the latter

conjecture. A priori, the space of chiral symmetric operators involving the relevant de-

grees of freedom | nucleons and pions| is in�nite. Moreover, since the interactions are

strong, nothing is really learned insofar as QCD is concerned by restricting oneself to any

arbitrary �nite subset of chiral symmetric operators; e.g., the simplest operators involving

the fewest number of �elds, or renormalizable operators. Fortunately, as a consequence

of non-linearly realized chiral symmetry, low-energy hadronic matrix elements involving

pions are analytic in momenta. The parameters that appear at leading order in small

momenta are well known, and so chiral symmetry leads to non-trivial predictions at en-

ergies near the threshold of a physical process | so-called low-energy theorems (LETs).

The crucial fact that the u and d quark masses are not identically zero can be straight-

forwardly accounted for in perturbation theory. As with any approximation scheme, the

fundamental importance of �PT lies in its ability to handle corrections to the leading

order in a systematic way[9]. This method has been applied with great success to the

interactions of pions with a single nucleon[10][11]. One might then wonder what generic

features of nuclear physics can be deduced from this chiral symmetry of QCD.

The main technical di�culty that arises when considering more than a single nucleon

is that �PT necessarily breaks down, as is made clear by the appearance of shallow

nuclear bound states[2]. This breakdown manifests itself via infrared singularities in

Feynman diagrams evaluated in the static approximation. The problem is clear in the

language of time-ordered perturbation theory. Evidently there are two types of energy

denominators that can appear in a typical time-ordered graph. The �rst type arises from

intermediate states which di�er in energy from the initial and �nal states only by the

emission or absorption of soft pions. These energy denominators are of the order of a

small momentum or pion mass and are therefore consistent with the usual chiral power

counting scheme. On the other hand, the second type of intermediate states di�er in

energy from the initial and �nal states by a nucleon 3-momentum, and therefore blow up

in the static limit. Graphs of the �rst type are called irreducible. Following the tenets

of scattering theory, one can modify the rules and use �PT to calculate an e�ective

potential, which consists of the sum of all Nn-nucleon irreducible graphs[1][2]. The S-

matrix, which of course includes all reducible contributions, is then obtained through
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iteration by solving a Lippmann-Schwinger equation. Several generic features of nuclear

physics, including two- and few-body forces [2][4][5] and isospin violation [6], have been

shown to arise naturally in this approach.

Here we will apply chiral perturbation theory to a scattering process involving light

nuclei. This program was initiated several years ago by Weinberg[3], in a study of the

pion-nucleus scattering lengths. The strategy is best described graphically. In �gure 1 we

display the anatomy of a scattering matrix element. �PT generates the irreducible kernel,

which is then sewn to the external nuclear wave functions (with Nn = A). Nuclear wave

functions are also calculable in �PT , and in fact exist for the deuteron[4]. A completely

consistent calculation can be carried out, and results are reported here. However, this

approach is in a sense counterproductive, since it becomes unclear what aspect of chiral

symmetry is being tested. Rather, in the spirit of �PT , where experimental input is

always welcome, one should make use of the most successful phenomenological potential.

This allows one to test the relevance of chiral symmetry in determining the irreducible

scattering kernel. In the case of the deuteron, we use the well known Bonn potential

wave function[12], which although not respectful of chiral symmetry, is at least spiritually

linked to QCD.

In this paper, we consider pion photoproduction on light nuclei at threshold. We carry

out a general power counting analysis of photoproduction, but specialize to neutral pion

photoproduction. We calculate a general formula for the invariant threshold amplitude to

third order in small momenta. This process is of course interesting in its own right; there

has been no systematic calculation based on chiral symmetry. Furthermore, as we will see,

this process is intimately related to threshold neutral pion photoproduction on a single

nucleon, a process which has caused a great deal of theoretical and experimental confu-

sion. In contrast to pion-nucleus scattering at threshold[3], the amplitude for neutral pion

photoproduction on nuclei, to third order in small momenta, has no undetermined param-

eters. Unfortunately, although the same is true in the single nucleon sector, evidently the

amplitude there converges slowly at best. Hence the single-scattering contribution must

be treated as phenomenological input. With a reasonable choice for this contribution, our

result for the deuteron electric dipole amplitude is in agreement with experiment.

This paper is organized as follows. In section 2 we review the standard power counting

formulas. In section 3 we present the heavy fermion e�ective lagrangian to the order

relevant to our calculation. Section 4 consists of a power counting analysis of pion photo-

production on a nucleus composed of A nucleons. Here we give a general formula for the

neutral pion photoproduction amplitude . We specialize to neutral pion photoproduction

on the deuteron in section 5. Finally, we summarize and conclude. Several appendices

are included for pedagogical purpose.

3



1
 ...
 A


Ψ


Ψ
A


A


...


...

...


...


...


...


...


...


...


I


Figure 1: The anatomy of a matrix element. The 	A's corre-
spond to the nuclear wave functions. The blob is the sum of
all A-nucleon irreducible graphs.

2 Power Counting

In the absence of exact solutions to quantum mechanical equations of motion, as in QCD,

systematic statements are possible only when a small dimensionless expansion parameter

is identi�ed. One class of dimensionless parameters consists of pure numbers, such as

a coupling constant associated with a renormalizable interaction, or the inverse of the

dimensionality of a group, as in the large-Nc limit. A second class of dimensionless

parameters consist of ratios of dimensional quantities. This class arises naturally via

broken symmetries, and is the case of interest in this paper.

Spontaneously broken continuous symmetries give rise to massless Goldstone modes.

These modes do not propagate in the vacuum, and therefore only couple derivatively.

Hence at energies small relative to the characteristic symmetry breaking scale, the in-

teractions of Goldstone bosons admit a power series in momenta. In QCD the small

parameter is Q=��, where Q is a characteristic momentum, and �� is the scale of chi-

ral symmetry breaking |of order the masses of the lowest lying resonances. The e�ects

of non-zero quark masses give the pion a mass. Since M�=�� is small, we treat Q as

representing a small momentum or a pion mass. A generic matrix element involving the

interaction of any number of pions and nucleons can then be written in the form

M = Q�F(Q=�); (1)

where � is a renormalization scale, and � is a counting index. It is straightforward to

arrive at a general formula for � by considering the momentum space structure of generic

Feynman rules. In this way one �nds[2]
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� = 4L� In � 2I� +
X
i

Vidi + 4� 4C; (2)

where L is the number of loops, In;� is the number of internal n; � lines, Vi is the number

of vertices of type i, di is the number of derivatives or powers of M� which contribute to

an interaction of type i, and C is the number of separately connected pieces. One can

also make use of the topological identities:

L = In + I� �
X
i

Vi + 1 (3)

2In + En =
X
i

Vini; (4)

where En is the number of external nucleon lines, and ni is the number of nucleon �elds

involved in an interaction of type i. Here we are interested in processes with the same

number of nucleon lines in the initial and �nal state, and so de�ning Nn � En=2, we

obtain the master formula

� = 4�Nn � 2C + 2L +
X
i

Vi�i

�i � di + ni=2 � 2: (5)

This formula is important because chiral symmetry places a lower bound: �i � 0. Hence

the leading irreducible graphs are tree graphs (L = 0) with the maximum number C of

seperately connected pieces, constructed from vertices with �i = 0.

How is this analysis altered in the presence of an external gauge �eld (i.e. electromag-

netic �eld)? Photons couple via the electromagnetic �eld strength tensor and by minimal

substitution. This has the simple e�ect of modifying the lower bound on �i to �i � �1.
(And, of course, of introducing an expansion in the electromagnetic coupling.)

3 Baryon �PT

With the power counting scheme established, the next step is to construct the various

interactions which contribute to matrix elements for a given value of �. The technology

that goes into building an e�ective lagrangian is standard by now[10]. Here we establish

our conventions. The pion triplet is contained in a matrix �eld

� = exp(
i~� � ~�
f�

); (6)
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which transforms under SU(2)L � SU(2)R as � ! L�Ry. It is convenient to introduce

the �eld � �
p
�, with transformation property � ! L�Uy = U�Ry. This transformation

property implicitly de�nes U . Out of � one can construct

V� =
1

2
[�y(@� � ieA�Q)� + �(@� � ieA�Q)�

y] (7)

A� =
i

2
[�y(@� � ieA�Q)� � �(@� � ieA�Q)�

y]; (8)

which transform as V� ! UV�U
y + U@�U

y and A� ! UA�U
y under SU(2)L � SU(2)R.

It is convenient to assign the nucleon doublet N the transformation property N ! UN .

With these ingredients, one can construct the leading order e�ective lagrangians,

L(2)
�� =

1

4
f2�tr(D��

yD��) +
1

4
f2�M

2
�tr(� + �y) (9)

L(1)
�N = i �N(D= �m)N + gA �NA=
5N (10)

L(0)
NN =

1

2
Ca( �N�aN)2; (11)

where gA � 1:25 is the axial coupling constant, and f� � 93MeV is the pion decay

constant, D� � @� + V�, �a is an arbitrary Hermitian operator, and the Ca are unde-

termined coe�cients. The pion covariant derivative is D�� = @�� � ieA�[Q;�], where

Q = (1 + �3)=2. The appearance of the nucleon mass m, both explicitly and through the

time derivative acting on the nucleon �eld, implies the existence of a dimensionless quan-

tity that is not small: m=�� � 1. This destroys the power counting. Fortunately, since

the nucleon carries a quantum number |Baryon number| which is conserved by the

strong interactions, one can maintain a consistent power counting framework by choosing

a heavy-fermion basis in which the nucleon mass does not appear at leading order[13][14].

The nucleon momentum can be written as p� = mv� + k�, where v� is the nucleon four-

velocity (v2 = 1), and k� is the amount by which the nucleon momentum is o� shell. We

can then de�ne a velocity dependent basis

Bv(x) = eimv�xN(x): (12)

In the rest frame of the nucleon, v� = (1; 0; 0; 0). Although choosing a particular

velocity breaks covariance, integrating over all velocity-dependent lagrangians restores

covariance[13]. The velocity-dependent lagrangian in the new basis is

L(1)
v = i �Bv(v �D)Bv + 2gA �Bv(A � Sv)Bv; (13)

where S�
v is the spin operator. Note that the nucleon mass term is no longer present in

the lagrangian. The new e�ective expansion parameter is jkj=��. The 1=m corrections
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enter via higher dimensional operators which a�ect the higher orders in �PT . At next to

leading order one �nds,

L(2)
v =

1

2m
�Bv(�D2 + (v �D)2 + 2igAfv �A;S �Dg

� i

2
[S�

v ; S
�
v ][(1 + �v)f

+
�� +

1

2
(�s � �v)trf

+
�� ] + :::)Bv; (14)

where �v = �p��n, �s = �p+�n, and f
+
�� � e(�yQ�+�Q�y)F��. F�� is the electromagnetic

�eld strength tensor. The dots signify that we have included only the interactions at this

order which are relevant to our calculation.

4 Pion photoproduction on light nuclei

Now we can put our technology to use. Consider a process with Nn = A nucleons in both

the initial and the �nal state, and a single photon and a single pion in the initial and �nal

state, respectively. Limiting ourselves to lowest order in the electromagnetic coupling, we

can order the chiral expansion of the irreducible diagrams by way of the counting index

�:

� = 3 � 3A

At leading order in small momenta, the matrix element is given by tree graphs with the

maximum number of separately connected pieces (L = 0, C = A) constructed out of one

interaction with �i = �1, and interactions with �i = 0. For example, at this order one

has the the Kroll-Ruderman term (�gure 2a).

� = 4 � 3A

The �rst corrections to the leading terms are still tree graphs with the maximum number

of separately connected pieces (L = 0, C = A), but have one vertex of higher index: i)

either one vertex with �i = �1 and one with �i = 1; ii) or vertices with �i = 0, the one

involving the photon �eld being a 1=m correction (�gure 2b).

� = 5 � 3A

There are four classes of corrections at this order:

1. One loop graphs (L = 1) with interactions with �i = �1; 0, and C = A (�gure

2c).
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Figure 2: Characteristic graphs which contribute at each or-

der. The time-ordered graphs are distinguished by bold nu-
cleon lines.

2. Counterterm graphs with L = 0, �i = 1 and C = A (�gure 2d). In the case of

neutral pion photoproduction, these graphs vanish and only �nite loop graphs

remain.

3. C = A tree (L = 0) graphs with i) �i = �1; 2 interactions; or ii) �i =

0; 1 interactions (�gure 2e) 1 (Some of these are 1=m2 corrections and are

proportional to the nucleon magnetic moments.)

4. Finally, there are tree graphs (L = 0) with one less than the maximumnumber

of separately connected pieces (C = A� 1), and interactions with �i = �1; 0.
These graphs fall into two separate classes. There are the 3-body graphs like

1Note that there are no irreducible graphs of this type where the photon and the pion are attached

to di�erent nucleons, because energy and momentum conservation require the exchange of a pion and

somewhere along the nucleon lines there is an energy 
ow of the order of the pion mass.
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Figure 3: The energy dependence of the impulse approxi-

mation graphs (a) and (b) approximately cancels the time-

ordered 3-body diagram (c).

the Feynman graph of �gures 2f and the time-ordered graph of 2g. For A > 2,

there are also disconnected 2-body interactions as in �gure 2h.

In principle, all of these graphs contribute to pion photoproduction on nuclei. However,

some generic simpli�cations arise when one sews in the nuclear wavefunctions.

First, the time-ordered graphs of type 2g and 2h get cancelled against recoil in the

one-pion-exchange piece of the potential. In order to see this, consider the three diagrams

of �gure 3. These graphs all have the same spin-isospin structure: they di�er only in the

energy denominators. The �rst two graphs (�gures 3a and 3b) arise when a diagram like

2a is sandwiched between wavefunctions obtained from a potential whose long range part

comes from pion exchange. They are proportional to

1

E(~p1 � ~q) + E(~p2 + ~q)� E(~p1)� E(~p2)
�

�
"

1

E(~p1 � ~q) + w � E(~p1)
+

1

E(~p2 + ~q) + w � E(~p2)

#
=

=
2

w[E(~p1 � ~q) + E(~p2 + ~q)� E(~p1)� E(~p2)]

� 1

w2

�
1 +O

�
E

w

��
: (15)

The �rst term corresponds to static one-pion-exchange in the potential; it is big, as

antecipated, because these reducible diagrams have small nucleon energy denominators.

The second term is smaller because of the additional small recoil numerator, while the

dots sum higher orders in chiral perturbation theory. On the other hand, the remaining

graph (�gure 3c) is proportional to
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Figure 4: Gauge invariant subset of 3-body interactions. In
Coulomb gauge, only graphs (a) and (b) contribute to neutral
pion photoproduction.

1

w2

�
1 +O

�
E

w

��
; (16)

and exactly cancels recoil in the reducible diagrams. Similar cancellations can be found

among the other time ordered diagrams. In other words, to this order in chiral pertur-

bation theory we can omit the time ordered diagrams 2g and 2h by at the same time

disregarding the energy dependence in the potential.

Second, in the case of neutral pion photoproduction at threshold a number of the

graphs in �gure 2 will not contribute: those where the photon line is attached to a pion,

and those that go like S � q, where q is the outgoing pion momentum. In particular, all

the leading order graphs vanish (�gure 2a), which immediately suggests that the cross

section will be smaller than for charged pion production, and | of particular interest to

us | more sensitive to two-nucleon contributions. Moreover, the 3-body time-ordered

graphs (�gure 2g) and the two body disconnected graphs (�gure 2h) also vanish, so we

can expect little in
uence of the energy-dependent part of the potential. As noted above,

the loop graphs are �nite for a neutral pion, and so there are no undetermined parameters

to this order.

Since all single-scattering contributions have been calculated to third order in small

momenta, all that is left to calculate are the 3-body graphs of �gure 4. In Coulomb

gauge (v � � = 0), only �gures 4a and 4b survive. Hence, to #(q3) in �PT , the threshold

amplitude for neutral pion photoproduction on a nucleus is remarkably simple. We obtain

the general formula
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M	A jq=0 =Mss
	A

+M(a)
	A

+M(b)
	A
; (17)

where

Mss
	A

= S	A(k)
X
i

Mi
N (18)

M(a)
	A

= i
2egAM�m

(2�)3f3�

X
i<j

< 	Aj(~� (i) � ~� (j) � � (i)z � (j)z )
( ~J � ~�)
~qij

02
j	A > (19)

M(b)
	A

= i
4egAM�m

(2�)3f3�

X
i<j

< 	Aj(~� (i) � ~� (j) � � (i)z � (j)z )
[ ~J � ( ~qij0 � ~k)]( ~qij

0 � ~�)
[( ~qij

0 � ~k)2 +M2
� ] ~qij

02
j	A > :(20)

S	A(k) is a generic overlap function. (See next section and appendices for details.)

The single-scattering electric dipole amplitudes have been calculated to #(q3), and are
given by[15]

E
�0p
0+ = � egA

8�f�
fM�

m
� M2

�

2m2
(3 + �p)�

M2
�

16f2�
g

E�0n
0+ = � egA

8�f�
fM

2
�

2m2
�n �

M2
�

16f2�
g: (21)

Unfortunately, the single nucleon sector is not well understood. On one hand, the neutron
amplitude has not been measured. On the other hand, the electric dipole amplitude, E�0p

0+ ,
has an interesting |and rather complicated| history, which we will discuss here 2. The
LET (to #(q3) in �PT ) was �rst derived in [17] yielding a value E�0p

0+ = �2:23 �10�3=M�+ .
Experiments at Mainz[18] and Saclay[19] suggested a violation of this LET. Subsequently,
the data were reexamined, leading to the revised value E�0p

0+ = (�2:0� 0:2) � 10�3=M�+ , a
result in agreement with the LET[20]. The source of the discrepancy is isospin violation;
the di�erence of 6:8MeV between the p�0 and n�+ thresholds leads to a rapid variation
of the amplitude in this region. The correct interpretation of the data depends critically
on the details of this variation. The situation as of 1991 is reviewed in [20]. To further
complicate the matter, it was then found that there are additional large �nite loop con-

tributions to E�0p
0+ at #(q3); the so-called triangle graphs (see �gure 2c)[15][21][22]. With

these contributions |which clearly must be included| the #(q3) LET no longer agrees
with the data. Moreover, it is clear that E�0p

0+ is |at best| slowly converging. E�0p
0+ has

now been calculated to #(q4), and shows no signs of converging. Evidently, it is di�cult

to escape the conclusion that the s-wave multipole is not a good testing ground of QCD.

All is not lost however; recently novel p-wave LET's have been calculated, and found
to have better convergence properties than the s-waves[23]. Nevertheless, this failure of
�PT in describing the s-waves is a lesson that cannot be ignored here. Evidently the

sensible thing to do is to make a best phenomenological estimate of the single-scattering

contribution. The chiral prediction without the triangle graphs would appear to be a
reasonable phenomenological estimate of E�0p

0+ , and so we assume the same for E�0n
0+ .

2For a review, see [16] .
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5 Neutral pion photoproduction on the deuteron

Here we will consider the deuteron. Deuteron phase shifts and properties are well de-

scribed by the Bonn wave function[12]. We also give |in paranthesis| the chiral wave

function[4] results. With the conventions de�ned in the appendices, the single-scattering

contribution to the deuteron is given by

Ess
d =

1 +M�=m

1 +M�=md

(E�0p
0+ + E�0n

0+ )Sd(k=2) = �1:34� 10�3=M�+ (�1:38); (22)

where Sd(k=2) is the deuteron form-factor:

Sd(k=2) =
Z
d3p��f (p) �i(p�

k

2
) = 0:722 (0:742); (23)

evaluated with the Bonn and chiral wave functions, respectively, and we have used the

phenomenological estimates:

E�0p
0+ = � egA

8�f�
fM�

m
� M2

�

2m2
(3 + �p)g = �2:24 � 10�3=M�+

E�0n
0+ = � egA

8�f�
fM

2
�

2m2
�ng = 0:5 � 10�3=M�+ : (24)

The 3-body contributions are readily obtained (see appendices for details). Figure 4a

yields

Ed
(a) = � egAm�m

8�(M� +md)�f3�k

Z
1

0

U2

r2
sin(

kr

2
) dr

= �2:20� 10�3=M�+ (�2:18) (25)

and �gure 4b yields

Ed
(b) = � egAm�m

8�(M� +md)2�f3�

Z 1

0
dz

Z
1

0
dr e�m

0rU2(
1

r

sin [(z � 1
2)kr]

(z � 1
2
)kr

�(1
r
+m0) f

sin(z � 1
2)kr

[(z � 1
2)kr]

3
�

cos(z � 1
2)kr

[(z � 1
2)kr]

2
g)

= �0:43 � 10�3=M�+ (�0:39): (26)

The total is then given by

Ed = Ed
ss + Ed

(a) + Ed
(b) = �3:97 � 10�3=M�+ (�3:95); (27)
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E
�0p
0+ E�0n

0+ Ess
d Ed

#(q3) incomplete -2.24 0.5 -1.34 -3.97

#(q3) 0.96 3.7 3.6 0.94

experiment -2.0�0.2 (?) ? - -3.74�0.25

Table 1: The importance of the single-scattering contribution: The �PT predictions at

#(q3) without the triangle graphs |serving as a phenomenological estimate| lead to

agreement with the experimental value of Ed[24].

to be compared to the experimental value[24]:

Ed
exp = (�3:74� 0:25) � 10�3=M�+ : (28)

Hence the simple picture provided by chiral symmetry does fairly well. In particular,

the importance of the 3-body correction (charge exchange contribution) emerges as a

consequence of chiral symmetry. Note that the results are not particularly sensitive to the

details of the wave function. There are of course several serious caveats. Strictly speaking

the #(q3) result fairs badly, as is made clear in Table 1. This is, of course, a consequence of

the theoretical failure in the single nucleon sector. Better experimental data is necessary

in the single scattering sector. Currently new measurements of E�0p
0+ are underway at

Mainz and Saskatoon[11]. In principle, with an accurate measurement of the deuteron

photoproduction amplitude one could extract the neutron electric dipole amplitude using

our results. Of course, in order to be convinced of the soundness of this method one

would have to calculate #(q4) 3-body e�ects in order to test the convergence properties

of the nuclear matrix elements. Finally, we note that our �nal results are quite similar to

results obtained some time ago, based on the photoproduction low-energy theorems in the

impulse approximation, and assorted estimates of the three-body corrections[25][26][27].

One might say that we have placed these successful results on a more sound theoretical

footing by determining|by way of chiral power counting| the precise graphs that should

dominate at threshold.

6 Conclusion

We have taken a pedagogical approach to pion photoproduction on nuclei in the frame-

work of baryon chiral perturbation theory. The method presented allows one to make

systematic use of chiral symmetry in a scattering process involving nuclei. In general,

calculations are more involved than those of the single nucleon sector, since one must

focus on the set of irreducible graphs, which requires use of time-ordered perturbation

theory. In the special case of neutral pion photoproduction, the amplitude to #(q3) is

simple, involving only tree level Feynman graphs evaluated in the heavy-fermion formal-

ism. We evaluated the deuteron electric dipole amplitude using the Bonn and chiral wave

13



functions, together with a phenomenological estimate for the single nucleon (impulse ap-

proximation) contributions. The result of this calculation, like that of the �-deuteron

scattering length[3], is in agreement with experiment. Hence the importance of 3-body

contributions emerges in both cases as a consequence of chiral symmetry. The result is,

of course, critically dependent on input from the single nucleon sector. Therefore, a more

accurate determination of the nucleon electric dipole amplitudes is clearly required in or-

der to make de�nite predictions for nuclei. There are many other processes which can be

explored using this technology. Charged pion photoproduction is of great interest since

in that case the single nucleon sector is well understood both theoretically and experi-

mentally. Also, results |both scattering lengths and photoproduction amplitudes|for

heavier nuclei like Tritium or Helium would be a particularly novel way to explore the

relevance of chiral symmetry in nuclei.
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A Normalization Conventions

With �eld normalization convention, the di�erential cross section for 
d ! �d can be

written as

d� =
(2�)4

u�
�4(p1 + k � p2 � q)

jMj2
2E1 2E2 2!q 2!k

d3~p2

(2�)3
d3~q

(2�)3
; (A.1)

where p1,p2 are the momenta of the initial and �nal deuterons, and q,k are the momenta

of the outcoming neutral pion and photon, respectively. u� is the relative velocity of the

incident particles, given by

u� =
p1 � k
E1 !k

: (A.2)

In the center of mass frame one �nds

d� =
1

64�2 u�

jMj2
E1 E2 !q !k

�(E1 + !k � E2 � !q) q
2 dq d
: (A.3)

The integration over q readily yields
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d� =
1

64�2
q

j~kj
jMj2

(E1 + j~kj) (E2 + !q)
d
; (A.4)

where !k = k, and E1, E2, and !q are the energies of the deuterons and the pion,

respectively. The slope of the di�erential cross section at threshold is de�ned as

j~kj
q

d�

d

jq=0 =

1

64�2

jMj2
q=0

(
q
m2

d +M2
� + j~kj) (md +M�)

' 1

64�2
jMj2q=0

(md +M�)2
: (A.5)

We can express the photoproduction amplitude in terms of rotationally invariant am-

plitudes:

M = i ~J � ~aM1 + i ~J � ~k ~q � ~aM2 + i ~J � ~q ~q � ~aM3 + i~q � ~k � ~aM4; (A.6)

where ~a � ~� � (~k � ~�)~�. It is convenient to de�ne an electric dipole amplitude, Ed, such

that, in Coulomb gauge,

Mjq=0 =Md � 8�(md +M�) 2i(~� � ~J) Ed; (A.7)

where ~J = 1
2(~�n + ~�p) . It then follows that

j~kj
q

d�

d

jq=0 =

8

3
E2
d : (A.8)

B The S-matrix

The S-matrix is de�ned as

Sfi = �i(2�)4 �4(pi � pf ) (
nY
i=1

1q
(2�)32Ei

)M; (B.1)

where n is the total number of external particles. For the 3-body process, 
NN ! �NN ,

we �nd

Sfi = �i(2�)4 �4(pi � pf )
MNN

(2�)9
q
2E1 2E2 2E0

1 2E
0

2 2E
 2E�

; (B.2)

whereas the S-matrix for 
d! �d is given by
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Sfi = �i(2�)4 �4(pi � pf )
Md

(2�)6
q
2Ed 2E

0

d 2E
 2E�

: (B.3)

Therefore,

Md =
1

(2�)3

s
Ed E

0

d

4 E1E2E
0

1E
0

2

MNN : (B.4)

Near threshold,

Ed �
q
m2

d +
~k2 � md ; E0

d � md ; E1 = E2 = E0

1 = E0

2 � m; (B.5)

and so we obtain

Md =
1

(2�)3 m
MNN : (B.6)

C Feynman Amplitudes

First we need the transition operator for 
NN ! �NN . Figure 4a yields

iT
(a)
NN = � egA

4f3�
Bv1 S

�
v1
Bv1 ��

(q0 + q) � v2
q02 �M2

�

Bv2 Bv2 �a3c�a3d �
1
c �

2
d + (1$ 2); (C.1)

where ~q0 = ~p � ~p0 . We can make use of the relation

BvS
�
vBv � 2m(

1

2
~� � ~v ; 1

2
~�) (C.2)

to obtain

iT
(a)
NN = �egA

4f3�
(2m)2

1

2
~�1 � ~�

2M�

~q0
2 (~� 1 � ~� 2 � � 1z �

2
z ) + (1$ 2): (C.3)

Here we approximated q0 � q00 �M� and chose Coulomb gauge ( �0 = 0 and ~� � ~k = 0).

Using the relation between the transition operator of 
NN ! �NN and 
d ! �d ,

obtained in appendix b, we get

iT
(a)
d = �2egAM�m

(2�)3f3�

~J � ~�
(~p � ~p0)2

(~� 1 � ~� 2 � � 1z �
2
z ): (C.4)

The contribution from Figure 4b is
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iT
(b)
NN = Bv1 (�

gA

f�
S�
v1
q00��

1
a ) Bv1

i

q002 �M2
�

e �a3c (q
00 + q0)� ��

� i

q0
2 �M2

�

Bv2 (
1

4f2�
(q0 + q)� v

�
2 �c3b �

2
b ) Bv2 + (1$ 2)

= �egA
4f3�

(2m)2 2M�( ~J � ~q00)
2 ~q0 � ~�

(~q00
2
+M2

� ) ~q
0
2
(~� 1 � ~� 2 � � 1z �

2
z ): (C.5)

It then follows that

iT
(b)
d = �2egAM�m

(2�)3f3�

2( ~J � ~q00) ~q0 � ~�
(~q00

2
+M2

�) ~q
0
2
(~� 1 � ~� 2 � � 1z �

2
z ); (C.6)

where ~q00 = ~p�~p0�~k. By sandwiching these transition operators between initial and �nal
states, which include the e�ect of the nuclear wave functions, we obtain the total matrix

element:

Md = < f jTdji > : (C.7)

Finally, we obtain

M(a)
d = i

2egAM�m

(2�)3f3�
< 	dj(~� 1 � ~� 2 � � 1z �

2
z )
~J � ~�
~q0

2 j	d > (C.8)

M(b)
d = i

4egAM�m

(2�)3f3�
< 	dj(~� 1 � ~� 2 � � 1z �

2
z )

( ~J � ~q00)~q0 � ~�
(~q002 +M2

�)~q
02
j	d > : (C.9)

It is straightforward to check that < ~� 1 � ~� 2 � � 1z �
2
z >= �2.

D Nuclear matrix elements

In this appendix we obtain the coordinate space representation of our matrix elements

and evaluate using the Bonn potential. Consider �rst the momentum dependent part of

M(a)
d :

<
~J � ~�

(~p� ~p0)2
>= 2�2 ( ~J � ~�)

Z
d3~r ��f (~r)

e�i
~k

2
�~r

r
�i(~r); (D.1)

where �(~r) is the spatial part of deuteron wave function, and the identity,

1

~q2
=

1

4�

Z
d3~r

ei~q�~r

r
; (D.2)

has been used. The spatial part of the deuteron wave function is
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�(~r) =
1p
4�

(
U(r)

r
+

1p
8
S12(r̂)

W (r)

r

)
(D.3)

where U(r) and W (r) are the S-state and the D-state of the radial wave function, re-

spectively, normalized such that
R
1

0 dr(U2 +W 2) = 1. The spin operator is de�ned to

be

S12(r̂) = 3(~�1 � r̂) (~�2 � r̂)� ~�1 � ~�2: (D.4)

Since the S-state wave function has no angular dependence, the contribution from the

S-state is easily evaluated:

<
~J � ~�

(~p � ~p0)2
>S�state=

4�2

k
( ~J � ~�)

Z
1

0

U2

r2
sin(

kr

2
) dr: (D.5)

Next, we consider the D-state wave function contribution to the matrix element, which

consists of the cross term between S-and D-states as well as the pure D-component. The

cross term is given by

<
~J � ~�

(~p� ~p0)2
>Cross =

�

2
p
8

Z
1

0
dr
UW

r

�
Z
d
 e�i

~k

2
�~r f ~J � ~� S12(r̂) + S12(r̂) ~J � ~�g: (D.6)

Here we use f~�i; ~�jg = 2�ij to show that

~J � ~� S12(r̂) + S12(r̂) ~J � ~� = 6 (~� � r̂)( ~J � r̂)� 2( ~J � ~�); (D.7)

and the cross term becomes

<
~J � ~�

(~p � ~p0)2
>Cross =

�p
8

Z
1

0
dr
UW

r

Z
d
 e�i

~k

2
�~r f3(~� � r̂)( ~J � r̂)� ( ~J � ~�)g: (D.8)

The angular integration yields

Z
d
 e�i

~k

2
�~r (~� � r̂)( ~J � r̂) = ( ~J � ~�) 4�

a3
(sin a� a cos a); (D.9)

where a = kr=2. Finally we have

<
~J � ~�

(~p � ~p0)2
>Cross=

8�2
p
2

k3
( ~J � ~�)

Z
1

0
dr
UW

r4
f3 sin kr

2
� 3

kr

2
cos

kr

2
� (

kr

2
)2 sin

kr

2
g:

(D.10)
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The pure D-state contribution can be evaluated in similar fashion:

<
~J � ~�

(~p� ~p0)2
>D�state =

�

16

Z
dr

W 2

r

Z
d
 e�i

~k

2
�~r S�

12 (
~J � ~�) S12

=
3�2

k3
( ~J � ~�)

Z
dr
W 2

r4
(8 sin

kr

2
� 4 cos

kr

2
� sin

kr

2
):(D.11)

Evaluating the integrals with the Bonn potential yields

<
~J � ~�

(~p� ~p0)2
>S�state = ( ~J � ~�) 7:616 fm�1

<
~J � ~�

(~p � ~p0)2
>Cross = ( ~J � ~�) 0:051 fm�1

<
~J � ~�

(~p � ~p0)2
>D�state = ( ~J � ~�) (�0:090) fm�1:

The contributions from the D-state wave function are clearly negligible relative to the

S-state contributions.

Next, consider the momentum dependent part of M(b)
d . Here we make use of the

integral parametrization:

1

f(~q0 � ~k)2 +M2
�g ~q0

2
=

Z 1

0

dz

[f(~q0 � ~k)2 +M2
�gz + (1� z)~q02]2

=
Z 1

0

dz

(~l2 + m02)2
;

where ~l � ~q0 � z~k , m0
2 �M2

� z (2� z) , and ~q0 = ~p � ~p0 . We can then write

~J � (~q0 � ~k) ~� � ~q0

f(~q0 � ~k)2 +M2
�g ~q0

2
=
Z 1

0
dz

( ~J �~l) (~� �~l) + (z � 1) ( ~J � ~k) (~� �~l )
(~l2 + m02)2

: (D.12)

The second term vanishes in the pure S-state. The Fourier transform of the �rst term is

( ~J �~l) (~� �~l )
(~l2 + m02)2

=
1

8�

Z
d3~r e�i

~l�~r f
~J � ~�
r
� ( ~J � r̂) (~� � r̂) (1

r
+m0)g e�m0r: (D.13)

Considering the S-state only, we obtain
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<
~J � (~q0 � ~k) ~� � ~q0

f(~q0 � ~k)2 +m2g ~q02
>S�state =

Z 1

0
dz <

( ~J �~l ) (~� �~l )
(~l2 + m0

2
)2
>S�state

= �2( ~J � ~�)
Z 1

0
dz

Z
1

0
dr e�m

0r U
2

r

sin [(z � 1
2
)kr]

(z � 1
2
)kr

��2( ~J � ~�)
Z 1

0
dz

Z
1

0
dr e�m

0r U2 (
1

r
+m0) f

sin(z � 1
2
)kr

[(z � 1
2
)kr]3

�
cos(z � 1

2
)kr

[(z � 1
2
)kr]2

g:

(D.14)

Finally we obtain

<
( ~J � ~q00) ~q0 � ~�
(~q002 +M2

�) ~q
02
>S�state =< ~J � ~� > 0:747 fm�1 (D.15)

where we have used kth = 0:685 fm�1 (mass of �0).
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