1,453 research outputs found

    Quenched Chiral Perturbation Theory for Baryons

    Full text link
    We develop quenched chiral perturbation theory for baryons using the graded-symmetry formalism of Bernard and Golterman and calculate non-analytic contributions to the baryon masses coming from quenched chiral loops. The usual term proportional to mq3/2m_{q}^{3/2} is substantially altered due to the cancellation of diagrams with internal quark loops. In addition, the η\eta' ``hairpin'' vertex leads to a new correction, proportional to mq1/2m_{q}^{1/2}. We compare our results to numerical lattice data and use them to estimate the size of the quenching error in the octet baryon masses.Comment: 7 pages (An abridged version of this note will appear in the proceedings of Lattice'93. Latex + 14 postscript files, bundled using uufiles. Needs psfig.) UW/PT-93-0

    Influenza Vaccine Effectiveness against Hospitalisation with Confirmed Influenza in the 2010-11 Seasons: A Test-negative Observational Study

    Get PDF
    Immunisation programs are designed to reduce serious morbidity and mortality from influenza, but most evidence supporting the effectiveness of this intervention has focused on disease in the community or in primary care settings. We aimed to examine the effectiveness of influenza vaccination against hospitalisation with confirmed influenza. We compared influenza vaccination status in patients hospitalised with PCR-confirmed influenza with patients hospitalised with influenza-negative respiratory infections in an Australian sentinel surveillance system. Vaccine effectiveness was estimated from the odds ratio of vaccination in cases and controls. We performed both simple multivariate regression and a stratified analysis based on propensity score of vaccination. Vaccination status was ascertained in 333 of 598 patients with confirmed influenza and 785 of 1384 test-negative patients. Overall estimated crude vaccine effectiveness was 57% (41%, 68%). After adjusting for age, chronic comorbidities and pregnancy status, the estimated vaccine effectiveness was 37% (95% CI: 12%, 55%). In an analysis accounting for a propensity score for vaccination, the estimated vaccine effectiveness was 48.3% (95% CI: 30.0, 61.8%). Influenza vaccination was moderately protective against hospitalisation with influenza in the 2010 and 2011 seasons

    Interleukin-4 activated macrophages mediate immunity to filarial helminth infection by sustaining CCR3-dependent eosinophilia

    Get PDF
    Eosinophils are effectors in immunity to tissue helminths but also induce allergic immunopathology. Mechanisms of eosinophilia in non-mucosal tissues during infection remain unresolved. Here we identify a pivotal function of tissue macrophages (Mϕ) in eosinophil anti-helminth immunity using a BALB/c mouse intra-peritoneal Brugia malayi filarial infection model. Eosinophilia, via C-C motif chemokine receptor (CCR)3, was necessary for immunity as CCR3 and eosinophil impairments rendered mice susceptible to chronic filarial infection. Post-infection, peritoneal Mϕ populations proliferated and became alternatively-activated (AAMϕ). Filarial AAMϕ development required adaptive immunity and interleukin-4 receptor-alpha. Depletion of Mϕ prior to infection suppressed eosinophilia and facilitated worm survival. Add back of filarial AAMϕ in Mϕ-depleted mice recapitulated a vigorous eosinophilia. Transfer of filarial AAMϕ into Severe-Combined Immune Deficient mice mediated immunological resistance in an eosinophil-dependent manner. Exogenous IL-4 delivery recapitulated tissue AAMϕ expansions, sustained eosinophilia and mediated immunological resistance in Mϕ-intact SCID mice. Co-culturing Brugia with filarial AAMϕ and/or filarial-recruited eosinophils confirmed eosinophils as the larvicidal cell type. Our data demonstrates that IL-4/IL-4Rα activated AAMϕ orchestrate eosinophil immunity to filarial tissue helminth infection

    Partial Flavor Symmetry Restoration for Chiral Staggered Fermions

    Full text link
    We study the leading discretization errors for staggered fermions by first constructing the continuum effective Lagrangian including terms of O(a^2), and then constructing the corresponding effective chiral Lagrangian. The terms of O(a^2) in the continuum effective Lagrangian completely break the SU(4) flavor symmetry down to the discrete subgroup respected by the lattice theory. We find, however, that the O(a^2) terms in the potential of the chiral Lagrangian maintain an SO(4) subgroup of SU(4). It follows that the leading discretization errors in the pion masses are SO(4) symmetric, implying three degeneracies within the seven lattice irreducible representations. These predictions hold also for perturbatively improved versions of the action. These degeneracies are observed, to a surprising degree of accuracy, in existing data. We argue that the SO(4) symmetry does not extend to the masses and interactions of other hadrons (vector mesons, baryons, etc), nor to higher order in a^2. We show how it is possible that, for physical quark masses of O(a^2), the new SO(4) symmetry can be spontaneously broken, leading to a staggered analogue of the Aoki-phase of Wilson fermions. This does not, however, appear to happen for presently studied versions of the staggered action.Comment: 26 pages, 2 figures (using psfig). Version to appear in PRD (clarifications added to introduction and section 6; typos corrected; references updated

    Modeling Kepler transit light curves as false positives: Rejection of blend scenarios for Kepler-9, and validation of Kepler-9d, a super-Earth-size planet in a multiple system

    Get PDF
    Light curves from the Kepler Mission contain valuable information on the nature of the phenomena producing the transit-like signals. To assist in exploring the possibility that they are due to an astrophysical false positive, we describe a procedure (BLENDER) to model the photometry in terms of a "blend" rather than a planet orbiting a star. A blend may consist of a background or foreground eclipsing binary (or star-planet pair) whose eclipses are attenuated by the light of the candidate and possibly other stars within the photometric aperture. We apply BLENDER to the case of Kepler-9, a target harboring two previously confirmed Saturn-size planets (Kepler-9b and Kepler-9c) showing transit timing variations, and an additional shallower signal with a 1.59-day period suggesting the presence of a super-Earth-size planet. Using BLENDER together with constraints from other follow-up observations we are able to rule out all blends for the two deeper signals, and provide independent validation of their planetary nature. For the shallower signal we rule out a large fraction of the false positives that might mimic the transits. The false alarm rate for remaining blends depends in part (and inversely) on the unknown frequency of small-size planets. Based on several realistic estimates of this frequency we conclude with very high confidence that this small signal is due to a super-Earth-size planet (Kepler-9d) in a multiple system, rather than a false positive. The radius is determined to be 1.64 (+0.19/-0.14) R(Earth), and current spectroscopic observations are as yet insufficient to establish its mass.Comment: 20 pages in emulateapj format, including 8 tables and 16 figures. To appear in ApJ, 1 January 2010. Accepted versio

    Characteristics of Kepler Planetary Candidates Based on the First Data Set: The Majority are Found to be Neptune-Size and Smaller

    Full text link
    In the spring of 2009, the Kepler Mission commenced high-precision photometry on nearly 156,000 stars to determine the frequency and characteristics of small exoplanets, conduct a guest observer program, and obtain asteroseismic data on a wide variety of stars. On 15 June 2010 the Kepler Mission released data from the first quarter of observations. At the time of this publication, 706 stars from this first data set have exoplanet candidates with sizes from as small as that of the Earth to larger than that of Jupiter. Here we give the identity and characteristics of 306 released stars with planetary candidates. Data for the remaining 400 stars with planetary candidates will be released in February 2011. Over half the candidates on the released list have radii less than half that of Jupiter. The released stars include five possible multi-planet systems. One of these has two Neptune-size (2.3 and 2.5 Earth-radius) candidates with near-resonant periods.Comment: Paper to accompany Kepler's June 15, 2010 data release; submitted to Astrophysical Journal Figures 1,2,& 3 revised. Improved labeling on all figures. Slight changes to planet frequencies in result

    Visible-light Phase Curves from the Second Year of the TESS Primary Mission

    Get PDF
    We carried out a systematic study of full-orbit phase curves for known transiting systems in the northern ecliptic sky that were observed during Year 2 of the TESS primary mission. We applied the same methodology for target selection, data processing, and light-curve fitting as we did in our Year 1 study. Out of the 15 transiting systems selected for analysis, seven—HAT-P-7, KELT-1, KELT-9, KELT-16, KELT-20, Kepler-13A, and WASP-12—show statistically significant secondary eclipses and day–night atmospheric brightness modulations. Small eastward dayside hot-spot offsets were measured for KELT-9b and WASP-12b. KELT-1, Kepler-13A, and WASP-12 show additional phase-curve variability attributed to the tidal distortion of the host star; the amplitudes of these signals are consistent with theoretical predictions. We combined occultation measurements from TESS and Spitzer to compute dayside brightness temperatures, TESS-band geometric albedos, Bond albedos, and phase integrals for several systems. The new albedo values solidify the previously reported trend between dayside temperature and geometric albedo for planets with 1500 K < Tday < 3000 K. For Kepler-13Ab, we carried out an atmospheric retrieval of the full secondary eclipse spectrum, which revealed a noninverted temperature–pressure profile, significant H2O and K absorption in the near-infrared, evidence for strong optical atmospheric opacity due to sodium, and a confirmation of the high geometric albedo inferred from our simpler analysis. We explore the implications of the phase integrals (ratios of Bond to geometric albedos) for understanding exoplanet clouds. We also report updated transit ephemerides for all of the systems studied in this work
    corecore