101 research outputs found

    Efficient QTL detection for nonhost resistance in wild lettuce: backcross inbred lines versus F2 population

    Get PDF
    In plants, several population types [F2, recombinant inbred lines, backcross inbred lines (BILs), etc.] are used for quantitative trait locus (QTL) analyses. However, dissection of the trait of interest and subsequent confirmation by introgression of QTLs for breeding purposes has not been as successful as that predicted from theoretical calculations. More practical knowledge of different QTL mapping approaches is needed. In this recent study, we describe the detection and mapping of quantitative resistances to downy mildew in a set of 29 BILs of cultivated lettuce (L. sativa) containing genome segments introgressed from wild lettuce (L. saligna). Introgression regions that are associated with quantitative resistance are considered to harbor a QTL. Furthermore, we compare this with results from an already existing F2 population derived from the same parents. We identified six QTLs in our BIL approach compared to only three in the F2 approach, while there were two QTLs in common. We performed a simulation study based on our actual data to help us interpret them. This revealed that two newly detected QTLs in the BILs had gone unnoticed in the F2, due to a combination of recessiveness of the trait and skewed segregation, causing a deficit of the wild species alleles. This study clearly illustrates the added value of extended genetic studies on two different population types (BILs and F2) to dissect complex genetic traits

    Modelling the Dynamics of Feral Alfalfa Populations and Its Management Implications

    Get PDF
    BACKGROUND: Feral populations of cultivated crops can pose challenges to novel trait confinement within agricultural landscapes. Simulation models can be helpful in investigating the underlying dynamics of feral populations and determining suitable management options. METHODOLOGY/PRINCIPAL FINDINGS: We developed a stage-structured matrix population model for roadside feral alfalfa populations occurring in southern Manitoba, Canada. The model accounted for the existence of density-dependence and recruitment subsidy in feral populations. We used the model to investigate the long-term dynamics of feral alfalfa populations, and to evaluate the effectiveness of simulated management strategies such as herbicide application and mowing in controlling feral alfalfa. Results suggest that alfalfa populations occurring in roadside habitats can be persistent and less likely to go extinct under current roadverge management scenarios. Management attempts focused on controlling adult plants alone can be counterproductive due to the presence of density-dependent effects. Targeted herbicide application, which can achieve complete control of seedlings, rosettes and established plants, will be an effective strategy, but the seedbank population may contribute to new recruits. In regions where roadside mowing is regularly practiced, devising a timely mowing strategy (early- to mid-August for southern Manitoba), one that can totally prevent seed production, will be a feasible option for managing feral alfalfa populations. CONCLUSIONS/SIGNIFICANCE: Feral alfalfa populations can be persistent in roadside habitats. Timely mowing or regular targeted herbicide application will be effective in managing feral alfalfa populations and limit feral-population-mediated gene flow in alfalfa. However, in the context of novel trait confinement, the extent to which feral alfalfa populations need to be managed will be dictated by the tolerance levels established by specific production systems for specific traits. The modelling framework outlined in this paper could be applied to other perennial herbaceous plants with similar life-history characteristics

    Genetic load and transgenic mitigating genes in transgenic Brassica rapa (field mustard) × Brassica napus (oilseed rape) hybrid populations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One theoretical explanation for the relatively poor performance of <it>Brassica rapa </it>(weed) × <it>Brassica napus </it>(crop) transgenic hybrids suggests that hybridization imparts a negative genetic load. Consequently, in hybrids genetic load could overshadow any benefits of fitness enhancing transgenes and become the limiting factor in transgenic hybrid persistence. Two types of genetic load were analyzed in this study: random/linkage-derived genetic load, and directly incorporated genetic load using a transgenic mitigation (TM) strategy. In order to measure the effects of random genetic load, hybrid productivity (seed yield and biomass) was correlated with crop- and weed-specific AFLP genomic markers. This portion of the study was designed to answer whether or not weed × transgenic crop hybrids possessing more crop genes were less competitive than hybrids containing fewer crop genes. The effects of directly incorporated genetic load (TM) were analyzed through transgene persistence data. TM strategies are proposed to decrease transgene persistence if gene flow and subsequent transgene introgression to a wild host were to occur.</p> <p>Results</p> <p>In the absence of interspecific competition, transgenic weed × crop hybrids benefited from having more crop-specific alleles. There was a positive correlation between performance and number of <it>B. napus </it>crop-specific AFLP markers [seed yield vs. marker number (r = 0.54, P = 0.0003) and vegetative dry biomass vs. marker number (r = 0.44, P = 0.005)]. However under interspecific competition with wheat or more weed-like conditions (i.e. representing a situation where hybrid plants emerge as volunteer weeds in subsequent cropping systems), there was a positive correlation between the number of <it>B. rapa </it>weed-specific AFLP markers and seed yield (r = 0.70, P = 0.0001), although no such correlation was detected for vegetative biomass. When genetic load was directly incorporated into the hybrid genome, by inserting a fitness-mitigating dwarfing gene that that is beneficial for crops but deleterious for weeds (a transgene mitigation measure), there was a dramatic decrease in the number of transgenic hybrid progeny persisting in the population.</p> <p>Conclusion</p> <p>The effects of genetic load of crop and in some situations, weed alleles might be beneficial under certain environmental conditions. However, when genetic load was directly incorporated into transgenic events, e.g., using a TM construct, the number of transgenic hybrids and persistence in weedy genomic backgrounds was significantly decreased.</p

    Analysis of population structure in autotetraploid species.

    No full text
    Population structure parameters commonly used for diploid species are reexamined for the particular case of tetrasomic inheritance (autotetraploid species). Recurrence equations that describe the evolution of identity probabilities for neutral genes in an "island model" of population structure are derived assuming tetrasomic inheritance. The expected equilibrium value of FST is computed. In contrast to diploids, the correlation of genes between individuals within populations with respect to genes between populations (FST) may vary among loci due to the particular segregation patterns expected under tetrasomic inheritance and is consequently inappropriate for estimating demographic parameters in such populations. We thus define a new parameter (rho) and derive its relationship with Nm. This relationship is shown to be independent from both the selfing rate and the proportion of double reduction. Finally, the statistical procedure required to evaluate these parameters using data on gene frequencies distribution among autotetraploid populations is developed

    Repetitive sequence-derived markers tag centromeres and telomeres and provide insights into chromosome evolution in Brassica napus

    No full text
    International audienceCentromeres and telomeres are obvious markers on chromosomes but their location on genetic maps is difficult to determine, which hampers many basic and applied research programmes. In this study, we used the characteristic distribution of five Brassica repeated sequences to generate physically anchored molecular markers tentatively tagging Brassica centromeres (84 markers) and telomeres (31 markers). These markers were mapped to the existing oilseed rape genetic map. Clusters of centromere-related loci were observed on 14 linkage groups; in addition to previous reports, we could thus provide information about the most likely position of centromeres on 17 of the 19 B. napus linkage groups. The location of centromeres on linkage groups usually matches their position on chromosomes and coincides with sites of evolutionary breakage between chromosomes. Most telomere sequence-derived markers mapped interstitially or in the proximity of centromeres; this result echoes previous reports on many eukaryote genomes and may reflect different forms of chromosome evolution. Seven telomere sequence-derived markers were located at the outermost positions of seven linkage groups and therefore probably tagged telomeres

    Development of crop-specific transposable element (SINE) markers for studying gene flow from oilseed rape to wild radish

    No full text
    International audienceThe screening of wild populations for evidence of gene flow from a crop to a wild related species requires the unambiguous detection of crop genes within the genome of the wild species, taking into account the intraspecific variability of each species. If the crop and wild relatives share a common ancestor, as is the case for the Brassica crops and their wild relatives (subtribe Brassiceae), the species-specific markers needed to make this unambiguous detection are difficult to identify. In the model oilseed rape (Brassica napus, AACC, 2n=38)-wild radish (Raphanus raphanistrum, RrRr, 2n=18) system, we utilized the presence or absence of a short-interspersed element (SINE) at a given locus to develop oilseed rape-specific markers, as SINE insertions are irreversible. By means of sequence-specific amplified polymorphism (SINE-SSAP) reactions, we identified and cloned 67 bands specific to the oilseed rape genome and absent from that of wild radish. Forty-seven PCR-specific markers were developed from three combinations of primers anchored either in (1) the 5'- and 3'-genomic sequences flanking the SINE, (2) the 5'-flanking and SINE internal sequences or (3) the SINE internal and flanking 3'-sequences. Seventeen markers were monomorphic whatever the oilseed rape varieties tested, whereas 30 revealed polymorphism and behaved either as dominant (17) or co-dominant (13) markers. Polymorphic markers were mapped on 19 genomic regions assigned to ten linkage groups. The markers developed will be efficient tools to trace the occurrence and frequency of introgressions of oilseed rape genomic region within wild radish populations

    Feral genetically modified herbicide tolerant oilseed rape from seed import spills: are concerns scientifically justified?

    Get PDF
    One of the concerns surrounding the import (for food and feed uses or processing) of genetically modified herbicide tolerant (GMHT) oilseed rape is that, through seed spillage, the herbicide tolerance (HT) trait will escape into agricultural or semi-natural habitats, causing environmental or economic problems. Based on these concerns, three EU countries have invoked national safeguard clauses to ban the marketing of specific GMHT oilseed rape events on their territory. However, the scientific basis for the environmental and economic concerns posed by feral GMHT oilseed rape resulting from seed import spills is debatable. While oilseed rape has characteristics such as secondary dormancy and small seed size that enable it to persist and be redistributed in the landscape, the presence of ferals is not in itself an environmental or economic problem. Crucially, feral oilseed rape has not become invasive outside cultivated and ruderal habitats, and HT traits are not likely to result in increased invasiveness. Feral GMHT oilseed rape has the potential to introduce HT traits to volunteer weeds in agricultural fields, but would only be amplified if the herbicides to which HT volunteers are tolerant were used routinely in the field. However, this worst-case scenario is most unlikely, as seed import spills are mostly confined to port areas. Economic concerns revolve around the potential for feral GMHT oilseed rape to contribute to GM admixtures in non-GM crops. Since feral plants derived from cultivation (as distinct from import) occur at too low a frequency to affect the coexistence threshold of 0.9% in the EU, it can be concluded that feral GMHT plants resulting from seed import spills will have little relevance as a potential source of pollen or seed for GM admixture. This paper concludes that feral oilseed rape in Europe should not be routinely managed, and certainly not in semi-natural habitats, as the benefits of such action would not outweigh the negative effects of management

    Brassica oleracea displays a high level of DNA methylation polymorphism

    Get PDF
    Brassica oleracea is a species displaying a high level of phenotypic variability. In order to evaluate the extent of genome methylation and to relate methylation polymorphism to phenotypic variability, we used the methylation-sensitive amplification polymorphism (MSAP) technique on 30 B. oleracea populations and lines representing the species diversity. We first observed that most MSAP fragments were inherited from one generation to the next one and were mainly additive in a progeny. A high mean rate of methylation estimated by MSAP was revealed in this species (range of 52-60% depending on the accessions), 30-41 % of MSAP fragments being detected by MspI and 17-27% by Hpall. Most of the MSAP-methylated fragments (95%) were polymorphic between the populations and lines analysed. We performed a phenetic analysis to group populations/lines by using MSAP-methylated fragments. The phenetic relationships revealed showed a populations/lines classification that did not correlate completely with a classification by morphotype as obtained using AFLP fragments insensitive to methylation polymorphism. The high methylation level and polymorphism reported in this study could be related with the high structural genome plasticity already reported in the Brassica species to explain the phenotypic variability of this species. (C) 2007 Elsevier Ireland Ltd. All rights reserved
    corecore