995 research outputs found
Osmo - Power. Osmotic Work; Energy Production from Osmosis of Fresh Water/Sea-Water Systems
It is imperative that new and ecologically acceptable energy sources are made available. Solar energy is a source which seems to be inexhaustible and free of pollution hazards. One vast source, which can be considered to be a solar energy source consists of the system fresh water/sea water. Fresh water is continually removed by the hydrological cycle where water evaporates from the ocean due to solar radiation and is eventually precipitated again in the form of fresh water feeding various rivers. Fresh water and ocean (salt) water mix when rivers flow into the oceans. The different chemical potentials are equalized due to this mixing in estuaries not producing any work similarly as when gas escapes into a vacuum. However, the difference in chemical potentials of sea water and fresh water can be utilized and made to produce work if the mixing is allowed to proceed via semi- permeable membranes, that is to say if use is made of the osmotic process. This would be equivalent to producing work letting steam move a piston which has a counter pressure slightly lower than the steam pressure. This work can be transformed into electrical energy. In other words use is made of the osmotic process
The influence of potassium on core and geodynamo evolution
We model the thermal evolution of the core and mantle using a parametrized convection scheme, and calculate the entropy available to drive the geodynamo as a function of time. The cooling of the core is controlled by the rate at which the mantle can remove heat. Rapid core cooling favours the operation of a geodynamo but creates an inner core that is too large; slower cooling reduces the inner core size but makes a geodynamo less likely to operate. Introducing potassium into the core retards inner core growth and provides an additional source of entropy. For our nominal model parameters, a core containing approximate to 400 ppm potassium satisfies the criteria of present-day inner core size, surface heat flux, mantle temperature and cooling rate, and positive core entropy production.We have identified three possibilities that may allow the criteria to be satisfied without potassium in the core. (1) The core thermal conductivity is less than half the generally accepted value of 50 W m(-1) K-1. (2) The core solidus and adiabat are significantly colder and shallower than results from shock experiments and ab initio simulations indicate. (3) The core heat flux has varied by no more than a factor of 2 over Earth history.
All models we examined with the correct present-day inner core radius have an inner core age of < 1.5 Gyr; prior to this time the geodynamo was sustained by cooling and radioactive heat production within a completely liquid core
Gully Formation at the Haughton Impact Structure (Arctic Canada) Through the Melting of Snow and Ground Ice, with Implications for Gully Formation on Mars
The formation of gullies on Mars has been the topic of active debate and scientific study since their first discovery by Malin and Edgett in 2000. Several mechanisms have been proposed to account for gully formation on Mars, from dry mass movement processes, release of water or brine from subsurface aquifers, and the melting of near-surface ground ice or snowpacks. In their global documentation of martian gullies, report that gullies are confined to ~2783S and ~2872N latitudes and span all longitudes. Gullies on Mars have been documented on impact crater walls and central uplifts, isolated massifs, and on canyon walls, with crater walls being the most common situation. In order to better understand gully formation on Mars, we have been conducting field studies in the Canadian High Arctic over the past several summers, most recently in summer 2018 and 2019 under the auspices of the Canadian Space Agency-funded Icy Mars Analogue Program. It is notable that the majority of previous studies in the Arctic and Antarctica, including our recent work on Devon Island, have focused on gullies formed on slopes generated by regular endogenic geological processes and in regular bedrock. How-ever, as noted above, meteorite impact craters are the most dominant setting for gullies on Mars. Impact craters provide an environment with diverse lithologies including impact-generated and impact-modified rocks and slope angle, and thus greatly variable hill slope processes could occur within a localized area. Here, we investigate the formation of gullies within the Haughton impact structure and compare them to gullies formed in unimpacted target rock in the nearby Thomas Lee Inle
Does the Boltzmann principle need a dynamical correction?
In an attempt to derive thermodynamics from classical mechanics, an
approximate expression for the equilibrium temperature of a finite system has
been derived [M. Bianucci, R. Mannella, B. J. West, and P. Grigolini, Phys.
Rev. E 51, 3002 (1995)] which differs from the one that follows from the
Boltzmann principle S = k log (Omega(E)) via the thermodynamic relation 1/T=
dS/dE by additional terms of "dynamical" character, which are argued to correct
and generalize the Boltzmann principle for small systems (here Omega(E) is the
area of the constant-energy surface). In the present work, the underlying
definition of temperature in the Fokker-Planck formalism of Bianucci et al. is
investigated and shown to coincide with an approximate form of the
equipartition temperature. Its exact form, however, is strictly related to the
"volume" entropy S = k log (Phi(E)) via the thermodynamic relation above for
systems of any number of degrees of freedom (Phi(E) is the phase space volume
enclosed by the constant-energy surface). This observation explains and
clarifies the numerical results of Bianucci et al. and shows that a dynamical
correction for either the temperature or the entropy is unnecessary, at least
within the class of systems considered by those authors. Explicit analytical
and numerical results for a particle coupled to a small chain (N~10) of quartic
oscillators are also provided to further illustrate these facts.Comment: REVTeX 4, 10 pages, 2 figures. Accepted to J. Stat. Phy
Increasing the competitiveness of e-vehicles in Europe
Introduction
This paper is concerned with incentives for the take-up and use of e-vehicles that are in place in different European countries. Especially, it analyses Norway and Austria, in order to establish and understand factors influencing the competitiveness of e-vehicles and potential market penetration. Norway currently enjoys the world’s largest take-up of electric cars per capita, achieved through an extensive package of incentives. Austria has used the concept of Model Regions with government support to stimulate market introduction. So far, this has been a less effective approach.
Methods
The paper brings in and combine analyses of national travel survey data and web surveys to e-vehicle owners and non-e-vehicle owners. It considers socio-economic factors including convenience and time savings due to e-vehicle policies.
Results
Analysing national travel surveys, we find a considerable potential for e-vehicles based on people’s everyday travel. Social networks play a crucial role in spreading knowledge about this relatively new technology. The take-up of battery electric vehicles correlates relatively closely with the user value of e-vehicle incentives. The fiscal effects of e-vehicle incentives are non-trivial – especially in the longer run. The cost of lifting a new technology into the market by means of government incentives is significant. We point to the importance of a strategy for the gradual phasing out of e-vehicle policies in countries with large incentives when the cost of vehicles goes down and the technology improves.
Conclusions
Successful market uptake and expansion of electric vehicles requires massive, expensive and combined policies. Central government backing, long term commitment and market-oriented incentives help reduce the perceived risk for market players like car importers and allow the e-vehicle market to thrive. For countries with low e-vehicle market shares the potential is promising. Battery electric vehicles are already a real option for the majority of peoples’ everyday trips and trip chains. However, their relative disadvantages must be compensated by means of incentives – at least in the initial market launch phase. Diffusion mechanisms play a sizeable role. The lack of knowledge in the population at large must be addressed
Structure and stability of finite gold nanowires
Finite gold nanowires containing less than 1000 atoms are studied using the
molecular dynamics simulation method and embedded atom potential. Nanowires
with the face-centered cubic structure and the (111) oriented cross-section are
prepared at T=0 K. After annealing and quenching the structure and vibrational
properties of nanowires are studied at room temperature. Several of these
nanowires form multi-walled structures of lasting stability. They consist of
concentrical cylindrical sheets and resemble multi-walled carbon nanotubes.
Vibrations are investigated by diagonalization of the dynamical matrix. It was
found that several percents of vibrational modes are unstable because of
uncompleted restructuring of initial fcc nanowires.Comment: 4 figures in gif forma
Use of the Pediatric Symptom Checklist for the detection of psychosocial problems in preventive child healthcare
BACKGROUND: Early detection and treatment of psychosocial problems by preventive child healthcare may lead to considerable health benefits, and a short questionnaire could support this aim. The aim of this study was to assess whether the Dutch version of the US Pediatric Symptom checklist (PSC) is valid and suitable for the early detection of psychosocial problems among children. METHODS: We included 687 children (response 84.3%) aged 7–12 undergoing routine health assessments in nine Preventive Child Health Services across the Netherlands. Child health professionals interviewed and examined children and parents. Before the interview, parents completed an authorised Dutch translation of the PSC and the Child Behavior Checklist (CBCL). The CBCL and data on the child's current treatment status were used as criteria for the validity of the PSC. RESULTS: The consistency of the Dutch PSC was good (Cronbach alpha 0.89). The area under the ROC curve using the CBCL as a criterion was 0.94 (95% confidence interval 0.92 to 0.96). At the US cut-off (28 and above), the prevalence rate of an increased score and sensitivity were lower than in the USA. At a lower cut-off (22 and above), sensitivity and specificity were similar to that of the US version (71.7% and 93.0% respectively). Information on the PSC also helped in the identification of children with elevated CBCL Total Problems Scores, above solely clinical judgment. CONCLUSION: The PSC is also useful for the early detection of psychosocial problems in preventive child healthcare outside the USA, especially with an adjusted cut-off
Thermal Degradation of Adsorbed Bottle-Brush Macromolecules: Molecular Dynamics Simulation
The scission kinetics of bottle-brush molecules in solution and on an
adhesive substrate is modeled by means of Molecular Dynamics simulation with
Langevin thermostat. Our macromolecules comprise a long flexible polymer
backbone with segments, consisting of breakable bonds, along with two side
chains of length , tethered to each segment of the backbone. In agreement
with recent experiments and theoretical predictions, we find that bond cleavage
is significantly enhanced on a strongly attractive substrate even though the
chemical nature of the bonds remains thereby unchanged.
We find that the mean bond life time decreases upon adsorption by
more than an order of magnitude even for brush molecules with comparatively
short side chains $N=1 \div 4$. The distribution of scission probability along
the bonds of the backbone is found to be rather sensitive regarding the
interplay between length and grafting density of side chains. The life time
declines with growing contour length as ,
and with side chain length as . The probability
distribution of fragment lengths at different times agrees well with
experimental observations. The variation of the mean length of the
fragments with elapsed time confirms the notion of the thermal degradation
process as a first order reaction.Comment: 15 pages, 7 figure
Melting behavior of ultrathin titanium nanowires
The thermal stability and melting behavior of ultrathin titanium nanowires
with multi-shell cylindrical structures are studied using molecular dynamic
simulation. The melting temperatures of titanium nanowires show remarkable
dependence on wire sizes and structures. For the nanowire thinner than 1.2 nm,
there is no clear characteristic of first-order phase transition during the
melting, implying a coexistence of solid and liquid phases due to finite size
effect. An interesting structural transformation from helical multi-shell
cylindrical to bulk-like rectangular is observed in the melting process of a
thicker hexagonal nanowire with 1.7 nm diameter.Comment: 4 pages, 4 figure
- …