120 research outputs found

    Dietary responses to a multiple sclerosis diagnosis: a qualitative study

    Get PDF
    Background/objectives: Multiple sclerosis (MS) is an immune-mediated disease with no known cure and insufficient evidence to support a special therapeutic diet to alter symptom management or disease progression. Several studies have reported dietary changes made by people with MS, but there has been limited investigation into experiences surrounding diet in those recently diagnosed. This study explored responses to diet after a recent diagnosis of MS in people living in Western Australia. Subjects/methods: Eleven adults with MS (mean time since diagnosis 8 months) participated in semi-structured interviews focusing on responses to diet since MS diagnosis. Interviews were transcribed, coded and analysed using grounded theory principles. Results: Three theme responses emerged; (1) the perceived incompatibility of lack of/or generalised dietary advice with disease seriousness at the time of diagnosis; (2) extensive personal research and information seeking with difficulty judging credibility, and (3) self-experimentation with diet to either control MS symptoms or to cure MS. Conclusions: Given the seriousness of the disease, there is a perceived gap in dietary information provided at the time of diagnosis. Healthcare professionals should address concerns with alternative therapeutic diets advertised to treat or cure MS, and clearly convey the reasoning for the general healthy dietary recommendations. This would better align advice with the perceptions about the role of diet in MS, assist people with MS in need of information and minimise dietary self-experimentation. Future research should explore the importance of diet for those who have had MS for a longer period of time

    The implication of identifying JAK2V617F in myeloproliferative neoplasms and myelodysplastic syndromes with bone marrow fibrosis

    Get PDF
    The myeloproliferative neoplasms (MPN) and myelodysplastic syndromes (MDS) occasionally demonstrate overlapping morphological features including hypercellularity, mild/nonspecific dysplastic changes and variable bone marrow fibrosis. Thus, when the associated bone marrow fibrosis results in a suboptimal specimen for morphological evaluation, the descriptive diagnosis “fibrotic marrow with features indeterminate for MDS versus MPN” is often applied. The JAK2V617F mutation was recently shown to be frequently identified in MPN, but it is rarely present in other myeloid disorders. However, the diagnostic utility of JAK2V617F screening in hypercellular bone marrow specimens with fibrosis has not been previously investigated. Using a real-time polymerase chain reaction melting-curve assay capable of detecting JAK2V617F in archived fixed materials, we retrospectively studied JAK2V617F in 45 cases with fibrotic hypercellular bone marrow at initial presentation, including 19 cases initially described as “with features indeterminate for MDS versus MPN”. These 19 cases were reclassified into more specific categories of MDS (n = 14) or MPN (n = 5) based on the availability of subsequent clinical data and/or bone marrow examinations. The JAK2V617F allele was identified in 17 out of 18 BCR/ABL gene-negative MPN cases with marrow fibrosis, whereas only wild-type alleles were identified in the remaining non-MPN cases. Importantly, JAK2V617F alleles were seen in all five cases of “with features indeterminate for MDS versus MPN” at initial presentation that were later determined to be MPN, but they were absent in the 14 cases later determined to be MDS. Our results suggest that JAK2V617F allele evaluation can be a useful ancillary test for discriminating MDS from MPN in specimens with bone marrow fibrosis

    Operational accuracy and comparative persistent antigenicity of HRP2 rapid diagnostic tests for Plasmodium falciparum malaria in a hyperendemic region of Uganda

    Get PDF
    BACKGROUND: Parasite-based diagnosis of malaria by microscopy requires laboratory skills that are generally unavailable at peripheral health facilities. Rapid diagnostic tests (RDTs) require less expertise, but accuracy under operational conditions has not been fully evaluated in Uganda. There are also concerns about RDTs that use the antigen histidine-rich protein 2 (HRP2) to detect Plasmodium falciparum, because this antigen can persist after effective treatment, giving false positive test results in the absence of infection. An assessment of the accuracy of Malaria Pf immuno-chromatographic test (ICT) and description of persistent antigenicity of HRP2 RDTs was undertaken in a hyperendemic area of Uganda. METHODS: Using a cross-sectional design, a total of 357 febrile patients of all ages were tested using ICT, and compared to microscopy as the gold standard reference. Two independent RDT readings were used to assess accuracy and inter-observer reliability. With a longitudinal design to describe persistent antigenicity of ICT and Paracheck, 224 children aged 6-59 months were followed up at 7-day intervals until the HRP2 antigens where undetectable by the RDTs. RESULTS: Of the 357 patients tested during the cross-sectional component, 40% (139) had positive blood smears for asexual forms of P. falciparum. ICT had an overall sensitivity of 98%, a specificity of 72%, a negative predictive value (NPV) of 98% and a positive predictive value (PPV) of 69%. ICT showed a high inter-observer reliability under operational conditions, with 95% of readings having assigned the same results (kappa statistics 0.921, p 50,000/microl, the mean duration of persistent antigenicity was 37 days compared to 26 days for parasitaemia less than 1,000/microl (log rank 21.9, p < 0.001). CONCLUSION: ICT is an accurate and appropriate test for operational use as a diagnostic tool where microscopy is unavailable. However, persistent antigenicity reduces the accuracy of this and other HRP2-based RDTs. The low specificity continues to be of concern, especially in children below five years of age. These pose limitations that need consideration, such as their use for diagnosis of patients returning with symptoms within two to four weeks of treatment. Good clinical skills are essential to interpret test results

    Laboratory demonstration of a prozone-like effect in HRP2-detecting malaria rapid diagnostic tests: implications for clinical management

    Get PDF
    Background: Malaria rapid diagnostic tests (RDTs) are now widely used for prompt on-site diagnosis in remote endemic areas where reliable microscopy is absent. Aberrant results, whereby negative test results occur at high parasite densities, have been variously reported for over a decade and have led to questions regarding the reliability of the tests in clinical use. Methods. In the first trial, serial dilutions of recombinant HRP2 antigen were tested on an HRP2-detectiing RDT. In a second trial, serial dilutions of culture-derived Plasmodium falciparum parasites were tested against three HRP2-detecting RDTs. Results: A prozone-like effect occurred in RDTs at a high concentration of the target antigen, histidine-rich protein-2 (above 15,000 ng/ml), a level that corresponds to more than 312000 parasites per L. Similar results were noted on three RDT products using dilutions of cultured parasites up to a parasite density of 25%. While reduced line intensity was observed, no false negative results occurred. Conclusions: These results suggest that false-negative malaria RDT results will rarely occur due to a prozone-like effect in high-density infections, and other causes are more likely. However, RDT line intensity is poorly indicative of parasite density in high-density infections and RDTs should, therefore, not be considered quantitative. Immediate management of suspected severe malaria should rely on clinical assessment or microscopy. Evaluation against high concentrations of antigen should be considered in malaria RDT product development and lot-release testing, to ensure that very weak or false negative results will not occur at antigen concentrations that might be seen clinically

    Identification of the Microsporidian Encephalitozoon cuniculi as a New Target of the IFNγ-Inducible IRG Resistance System

    Get PDF
    The IRG system of IFNγ-inducible GTPases constitutes a powerful resistance mechanism in mice against Toxoplasma gondii and two Chlamydia strains but not against many other bacteria and protozoa. Why only T. gondii and Chlamydia? We hypothesized that unusual features of the entry mechanisms and intracellular replicative niches of these two organisms, neither of which resembles a phagosome, might hint at a common principle. We examined another unicellular parasitic organism of mammals, member of an early-diverging group of Fungi, that bypasses the phagocytic mechanism when it enters the host cell: the microsporidian Encephalitozoon cuniculi. Consistent with the known susceptibility of IFNγ-deficient mice to E. cuniculi infection, we found that IFNγ treatment suppresses meront development and spore formation in mouse fibroblasts in vitro, and that this effect is mediated by IRG proteins. The process resembles that previously described in T. gondii and Chlamydia resistance. Effector (GKS subfamily) IRG proteins accumulate at the parasitophorous vacuole of E. cuniculi and the meronts are eliminated. The suppression of E. cuniculi growth by IFNγ is completely reversed in cells lacking regulatory (GMS subfamily) IRG proteins, cells that effectively lack all IRG function. In addition IFNγ-induced cells infected with E. cuniculi die by necrosis as previously shown for IFNγ-induced cells resisting T. gondii infection. Thus the IRG resistance system provides cell-autonomous immunity to specific parasites from three kingdoms of life: protozoa, bacteria and fungi. The phylogenetic divergence of the three organisms whose vacuoles are now known to be involved in IRG-mediated immunity and the non-phagosomal character of the vacuoles themselves strongly suggests that the IRG system is triggered not by the presence of specific parasite components but rather by absence of specific host components on the vacuolar membrane.Grants from the Deutsche Forschungsgemeinschaft: SFB635, 670, 680, SPP1399

    Circumventing the stability problems of graphene nanoribbon zigzag edges

    Get PDF
    Carbon nanostructures with zigzag edges exhibit unique properties—such as localized electronic states and spins—with exciting potential applications. Such nanostructures however are generally synthesized under vacuum because their zigzag edges are unstable under ambient conditions: a barrier that must be surmounted to achieve their scalable integration into devices for practical purposes. Here we show two chemical protection/deprotection strategies, demonstrated on labile, air-sensitive chiral graphene nanoribbons. Upon hydrogenation, the chiral graphene nanoribbons survive exposure to air, after which they are easily converted back to their original structure by annealing. We also approach the problem from another angle by synthesizing a form of the chiral graphene nanoribbons that is functionalized with ketone side groups. This oxidized form is chemically stable and can be converted to the pristine hydrocarbon form by hydrogenation and annealing. In both cases, the deprotected chiral graphene nanoribbons regain electronic properties similar to those of the pristine nanoribbons. We believe both approaches may be extended to other graphene nanoribbons and carbon-based nanostructures.Research was supported by MCIN/AEI/10.13039/501100011033 (grant nos PID2019-107338RB-C62 (D.P.), PID2019-107338RB-C63 (M.C. and D.G.d.O.) and FJC2019-041202-I (F.S.)); the European Union’s Horizon 2020 programme (grant nos 863098 (D.P.) and 635919 (D.G.d.O.), and Marie Skłodowska-Curie Actions Individual Fellowship no. 101022150 (T.W.)); the Gobierno Vasco (grant no. PIBA_2020_1_0036 (D.G.d.O.)); the Xunta de Galicia (Centro Singular de Investigación de Galicia, 2019–2022, grant no. ED431G2019/03 (D.P.)); the European Regional Development Fund; the Praemium Academie of the Academy of Science of the Czech Republic (GACR project no. 20-13692X (P.J.)); the Czech Nanolab Research Infrastructure supported by MEYS CR (project no. LM2018110 (P.J.)); and the Operational Programme for Research, Development and Education of the European Regional Development Fund (project no. CZ.02.1.01/0.0/0.0/16_019/0000754 (P.J.)).Peer reviewe

    Essential thrombocythemia

    Get PDF
    Essential thrombocythemia (ET) is an acquired myeloproliferative disorder (MPD) characterized by a sustained elevation of platelet number with a tendency for thrombosis and hemorrhage. The prevalence in the general population is approximately 30/100,000. The median age at diagnosis is 65 to 70 years, but the disease may occur at any age. The female to male ratio is about 2:1. The clinical picture is dominated by a predisposition to vascular occlusive events (involving the cerebrovascular, coronary and peripheral circulation) and hemorrhages. Some patients with ET are asymptomatic, others may experience vasomotor (headaches, visual disturbances, lightheadedness, atypical chest pain, distal paresthesias, erythromelalgia), thrombotic, or hemorrhagic disturbances. Arterial and venous thromboses, as well as platelet-mediated transient occlusions of the microcirculation and bleeding, represent the main risks for ET patients. Thromboses of large arteries represent a major cause of mortality associated with ET or can induce severe neurological, cardiac or peripheral artery manifestations. Acute leukemia or myelodysplasia represent only rare and frequently later-onset events. The molecular pathogenesis of ET, which leads to the overproduction of mature blood cells, is similar to that found in other clonal MPDs such as chronic myeloid leukemia, polycythemia vera and myelofibrosis with myeloid metaplasia of the spleen. Polycythemia vera, myelofibrosis with myeloid metaplasia of the spleen and ET are generally associated under the common denomination of Philadelphia (Ph)-negative MPDs. Despite the recent identification of the JAK2 V617F mutation in a subset of patients with Ph-negative MPDs, the detailed pathogenetic mechanism is still a matter of discussion. Therapeutic interventions in ET are limited to decisions concerning the introduction of anti-aggregation therapy and/or starting platelet cytoreduction. The therapeutic value of hydroxycarbamide and aspirin in high risk patients has been supported by controlled studies. Avoiding thromboreduction or opting for anagrelide to postpone the long-term side effects of hydrocarbamide in young or low risk patients represent alternative options. Life expectancy is almost normal and similar to that of a healthy population matched by age and sex

    Epigenetic abnormalities in myeloproliferative neoplasms: a target for novel therapeutic strategies

    Get PDF
    The myeloproliferative neoplasms (MPNs) are a group of clonal hematological malignancies characterized by a hypercellular bone marrow and a tendency to develop thrombotic complications and to evolve to myelofibrosis and acute leukemia. Unlike chronic myelogenous leukemia, where a single disease-initiating genetic event has been identified, a more complicated series of genetic mutations appear to be responsible for the BCR-ABL1-negative MPNs which include polycythemia vera, essential thrombocythemia, and primary myelofibrosis. Recent studies have revealed a number of epigenetic alterations that also likely contribute to disease pathogenesis and determine clinical outcome. Increasing evidence indicates that alterations in DNA methylation, histone modification, and microRNA expression patterns can collectively influence gene expression and potentially contribute to MPN pathogenesis. Examples include mutations in genes encoding proteins that modify chromatin structure (EZH2, ASXL1, IDH1/2, JAK2V617F, and IKZF1) as well as epigenetic modification of genes critical for cell proliferation and survival (suppressors of cytokine signaling, polycythemia rubra vera-1, CXC chemokine receptor 4, and histone deacetylase (HDAC)). These epigenetic lesions serve as novel targets for experimental therapeutic interventions. Clinical trials are currently underway evaluating HDAC inhibitors and DNA methyltransferase inhibitors for the treatment of patients with MPNs
    corecore