48 research outputs found

    John Perry, KNOWLEDGE, POSSIBILITY, AND CONSCIOUSNESS

    Get PDF

    Mitigation of atmospheric perturbations and solid Earth movements in a TerraSAR-X time-series

    Full text link
    The TerraSAR-X (TSX) synthetic aperture radar (SAR) marks the recent emergence of a new generation of spaceborne radar sensors that can for the first time lay claim to localization accuracies in the sub-meter range. The TSX platform’s extremely high orbital stability and the sensor’s hardware timing accuracy combine to enable direct measurements of atmospheric refraction and solid Earth movements. By modeling these effects for individual TSX acquisitions, absolute pixel geolocation accuracy on the order of several centimeters can be achieved without need for even a single tiepoint. A 16-month time series of images was obtained over a fixed test site, making it possible to validate both an atmospheric refraction and a solid Earth tide model, while at the same time establishing the instrument’s long-term stability. These related goals were achieved by placing trihedral corner reflectors (CRs) at the test site and estimating their phase centers with centimeter-level accuracy using differential GPS (DGPS). Oriented in pairs toward a given satellite track, the CRs could be seen as bright “points” in the images, providing a geometric reference set. SAR images from the high-resolution spotlight (HS) mode were obtained in alternating ascending and descending orbit configurations. The highest-resolution products were selected for their small sample dimensions, as positions can be more precisely determined. Based on the delivered product annotations, the CR image positions were predicted, and these predictions were compared with their measured image positions both before and after compensation for atmospheric refraction and systematic solid Earth deviations. It was possible to show that when the atmospheric distortion and Earth tides are taken into account, the TSX HS products have geolocation accuracies far exceeding the specified requirements. Furthermore, this accuracy was maintained for the duration of the 16-month test period. It could be demonstrated that with a correctly calibrated sensor, and after accounting for atmospheric and tidal effects, tiepoint-free geolocation is possible with TSX with an absolute product accuracy of about 5 cm

    The small heat shock protein Hsp27 binds α-synuclein fibrils, preventing elongation and cytotoxicity

    Get PDF
    Proteostasis, or protein homeostasis, encompasses the maintenance of the conformational and functional integrity of the proteome and involves an integrated network of cellular pathways. Molecular chaperones, such as the small heat shock proteins (sHsps), are key elements of the proteostasis network that have crucial roles in inhibiting the aggregation of misfolded proteins. Failure of the proteostasis network can lead to the accumulation of misfolded proteins into intracellular and extracellular deposits. Deposits containing fibrillar forms of α-sy-nuclein (α-syn) are characteristic of neurodegenerative disorders including Parkinson\u27s disease and dementia with Lewy bodies. Here we show that the sHsp Hsp27 (HSPB1) binds to α-syn fibrils, inhibiting fibril growth by preventing elongation. Using total internal reflection fluorescence (TIRF)- based imaging methods, we show that Hsp27 binds along the surface of α-syn fibrils, decreasing their hydrophobicity. Binding of Hsp27 also inhibits cytotoxicity of α-syn fibrils. Our results demonstrate that the ability of sHsps, such as Hsp27, to bind fibrils represents an important mechanism through which they May mitigate cellular toxicity associated with aberrant protein aggregation. Fibril binding May represent a generic mechanism by which chaperone-active sHsps interact with aggregation-prone proteins, highlighting the potential to target sHsp activity to prevent or disrupt the onset and progression of α-syn aggregation associated with α-synucleinopathies

    Sex-related differences in aging rate are associated with sex chromosome system in amphibians

    Get PDF
    Sex-related differences in mortality are widespread in the animal kingdom. Although studies have shown that sex determination systems might drive lifespan evolution, sex chromosome influence on aging rates have not been investigated so far, likely due to an apparent lack of demographic data from clades including both XY (with heterogametic males) and ZW (heterogametic females) systems. Taking advantage of a unique collection of capture-recapture datasets in amphibians, a vertebrate group where XY and ZW systems have repeatedly evolved over the past 200 million years, we examined whether sex heterogamy can predict sex differences in aging rates and lifespans. We showed that the strength and direction of sex differences in aging rates (and not lifespan) differ between XY and ZW systems. Sex-specific variation in aging rates was moderate within each system, but aging rates tended to be consistently higher in the heterogametic sex. This led to small but detectable effects of sex chromosome system on sex differences in aging rates in our models. Although preliminary, our results suggest that exposed recessive deleterious mutations on the X/Z chromosome (the "unguarded X/Z effect") or repeat-rich Y/W chromosome (the "toxic Y/W effect") could accelerate aging in the heterogametic sex in some vertebrate clades.Peer reviewe

    Low urine pH and acid excretion do not predict bone fractures or the loss of bone mineral density: a prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The acid-ash hypothesis, the alkaline diet, and related products are marketed to the general public. Websites, lay literature, and direct mail marketing encourage people to measure their urine pH to assess their health status and their risk of osteoporosis.</p> <p>The objectives of this study were to determine whether 1) low urine pH, or 2) acid excretion in urine [sulfate + chloride + 1.8x phosphate + organic acids] minus [sodium + potassium + 2x calcium + 2x magnesium mEq] in fasting morning urine predict: a) fragility fractures; and b) five-year change of bone mineral density (BMD) in adults.</p> <p>Methods</p> <p>Design: Cohort study: the prospective population-based Canadian Multicentre Osteoporosis Study. Multiple logistic regression was used to examine associations between acid excretion (urine pH and urine acid excretion) in fasting morning with the incidence of fractures (6804 person years). Multiple linear regression was used to examine associations between acid excretion with changes in BMD over 5-years at three sites: lumbar spine, femoral neck, and total hip (n = 651). Potential confounders controlled included: age, gender, family history of osteoporosis, physical activity, smoking, calcium intake, vitamin D status, estrogen status, medications, renal function, urine creatinine, body mass index, and change of body mass index.</p> <p>Results</p> <p>There were no associations between either urine pH or acid excretion and either the incidence of fractures or change of BMD after adjustment for confounders.</p> <p>Conclusion</p> <p>Urine pH and urine acid excretion do not predict osteoporosis risk.</p

    Phosphate decreases urine calcium and increases calcium balance: A meta-analysis of the osteoporosis acid-ash diet hypothesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The acid-ash hypothesis posits that increased excretion of "acidic" ions derived from the diet, such as phosphate, contributes to net acidic ion excretion, urine calcium excretion, demineralization of bone, and osteoporosis. The public is advised by various media to follow an alkaline diet to lower their acidic ion intakes. The objectives of this meta-analysis were to quantify the contribution of phosphate to bone loss in healthy adult subjects; specifically, a) to assess the effect of supplemental dietary phosphate on urine calcium, calcium balance, and markers of bone metabolism; and to assess whether these affects are altered by the b) level of calcium intake, c) the degree of protonation of the phosphate.</p> <p>Methods</p> <p>Literature was identified through computerized searches regarding phosphate with surrogate and/or direct markers of bone health, and was assessed for methodological quality. Multiple linear regression analyses, weighted for sample size, were used to combine the study results. Tests of interaction included stratification by calcium intake and degree of protonation of the phosphate supplement.</p> <p>Results</p> <p>Twelve studies including 30 intervention arms manipulated 269 subjects' phosphate intakes. Three studies reported net acid excretion. All of the meta-analyses demonstrated significant decreases in urine calcium excretion in response to phosphate supplements whether the calcium intake was high or low, regardless of the degree of protonation of the phosphate supplement. None of the meta-analyses revealed lower calcium balance in response to increased phosphate intakes, whether the calcium intake was high or low, or the composition of the phosphate supplement.</p> <p>Conclusion</p> <p>All of the findings from this meta-analysis were contrary to the acid ash hypothesis. Higher phosphate intakes were associated with decreased urine calcium and increased calcium retention. This meta-analysis did not find evidence that phosphate intake contributes to demineralization of bone or to bone calcium excretion in the urine. Dietary advice that dairy products, meats, and grains are detrimental to bone health due to "acidic" phosphate content needs reassessment. There is no evidence that higher phosphate intakes are detrimental to bone health.</p

    Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease

    Get PDF
    We sought to identify new susceptibility loci for Alzheimer's disease through a staged association study (GERAD+) and by testing suggestive loci reported by the Alzheimer's Disease Genetic Consortium (ADGC) in a companion paper. We undertook a combined analysis of four genome-wide association datasets (stage 1) and identified ten newly associated variants with P ≤ 1 × 10−5. We tested these variants for association in an independent sample (stage 2). Three SNPs at two loci replicated and showed evidence for association in a further sample (stage 3). Meta-analyses of all data provided compelling evidence that ABCA7 (rs3764650, meta P = 4.5 × 10−17; including ADGC data, meta P = 5.0 × 10−21) and the MS4A gene cluster (rs610932, meta P = 1.8 × 10−14; including ADGC data, meta P = 1.2 × 10−16) are new Alzheimer's disease susceptibility loci. We also found independent evidence for association for three loci reported by the ADGC, which, when combined, showed genome-wide significance: CD2AP (GERAD+, P = 8.0 × 10−4; including ADGC data, meta P = 8.6 × 10−9), CD33 (GERAD+, P = 2.2 × 10−4; including ADGC data, meta P = 1.6 × 10−9) and EPHA1 (GERAD+, P = 3.4 × 10−4; including ADGC data, meta P = 6.0 × 10−10)

    Genetics ignite focus on microglial inflammation in Alzheimer’s disease

    Get PDF
    In the past five years, a series of large-scale genetic studies have revealed novel risk factors for Alzheimer’s disease (AD). Analyses of these risk factors have focused attention upon the role of immune processes in AD, specifically microglial function. In this review, we discuss interpretation of genetic studies.  We then focus upon six genes implicated by AD genetics that impact microglial function: TREM2, CD33, CR1, ABCA7, SHIP1, and APOE. We review the literature regarding the biological functions of these six proteins and their putative role in AD pathogenesis. We then present a model for how these factors may interact to modulate microglial function in AD

    Accurate geometric correction for normalisation of PALSAR radiometry

    Full text link
    In contrast to earlier satellites with SAR instruments, the ENVISAT and ALOS platforms provide state vectors and timing with higher relative and absolute accuracy, allowing the ASAR and PALSAR sensors to directly support accurate tiepoint-free geolocation of their imagery. This enables not only direct map overlays with other sources, but also normalisation for the systematic influence of terrain variations on individual image radiometry. Such normalisation is necessary to reduce dependency on single-track repeat passes for change-detection and interpretation. We first describe our verifications of the geometric behaviour of PALSAR products using available products with surveyed corner reflector targets present in reference images. We model and evaluate the path delays induced by the troposphere and ionosphere on reference imagery, and compare Faraday rotation estimates produced using fully polarimetric PLR imagery with values derived from GNSS-network measurements. In the latter estimate, the total electron content (TEC) of the ionosphere at the time of the PALSAR acquisition is combined with a model of the Earth's magnetic field to estimate the Faraday rotation induced by the ionosphere along the line of sight from the satellite to each point on the ground. Given accurate knowledge of the acquisition geometry of a SAR image from one of the above sensors together with a digital elevation model (DEM) of the area imaged, radiometric image simulation is applied to estimate the local illuminated area for each point in the image. Rather than a typical ellipsoid-based approximation that ignores topographic variation, terrain-based radiometric image simulation is used as the basis for converting from β0 to σ0 or γ0 backscatter normalisation conventions. The interpretability of PALSAR imagery with and without ellipsoid- vs. terrain-based normalisations is compared and evaluated
    corecore