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Abstract

In the past five years, a series of large-scale genetic studies have revealed novel risk factors for Alzheimer’s disease
(AD). Analyses of these risk factors have focused attention upon the role of immune processes in AD, specifically
microglial function. In this review, we discuss interpretation of genetic studies. We then focus upon six genes
implicated by AD genetics that impact microglial function: TREM2, CD33, CR1, ABCA7, SHIP1, and APOE. We review
the literature regarding the biological functions of these six proteins and their putative role in AD pathogenesis. We
then present a model for how these factors may interact to modulate microglial function in AD.
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Introduction
Recent large scale genetic studies have identified a set of
single nucleotide polymorphisms (SNP)s that are associated
with Alzheimer’s disease (AD) risk [1–7]. Several of the
genes underlying these SNPs encode proteins relevant to
microglial function and inflammation, including TREM2,
CD33, CR1, ABCA7 and SHIP1. Prior to these studies, in-
flammation was well-recognized to occur in AD with a gen-
eral consensus that anti-inflammatory agents may be
helpful. However, the specific aspects of inflammation that
were beneficial or detrimental were unclear (reviewed in
[8–13]). These recent genetic studies pinpoint specific pro-
teins and pathways in AD risk. When considered along
with the pro-inflammatory role of the prototypical AD gen-
etic risk factor, APOE4, a model emerges showing that AD
risk is reduced by processes that suppress inflammatory
cytokine signaling and enhance clearance of debris, includ-
ing amyloid. In this review, we examine these recent genetic
studies and their interpretation, integrate the findings into
our understanding of inflammation processes in AD and
discuss the potential for their translation into AD preventa-
tive and/or therapeutic agents.
The advent of well-powered genome wide association

studies (GWAS) has been critical to this advance. Simply

put, these studies compare SNP frequencies between AD
and non-AD populations. SNPs with significantly differ-
ent minor allele frequencies between these two popula-
tions constitute potential AD risk factors. For many
years, researchers performed candidate SNP studies to
identify those that associate with AD risk. The resulting
studies were, in retrospect, typically underpowered and
not reproducible. This difficulty was not restricted to
AD research but was rather a common issue in genetic
association studies (reviewed in [14]). The large-scale
nature of these GWAS and the requirement for inde-
pendent replication has largely mitigated concerns about
power and reproducibility [1–5]. Among the positive
findings reported recently, only the SNP associated with
CD33 has struggled with reproducibility [4, 7]. There are
several interpretations of non-confirmatory studies. First,
when considering whether new data are inconsistent
with prior findings, we suggest that the analysis include
the 95 % confidence intervals for the SNP association
with AD in both the “positive” and “negative” study. If
the confidence intervals overlap, the studies are not ne-
cessarily in disagreement, and perhaps a meta-analysis of
the overall dataset would be informative. This is espe-
cially appropriate if the follow-up study is underpowered
relative to the original study or if the original finding ex-
hibited a winner’s curse bias, thus overestimating the
SNP’s correlation with AD risk [15]. A second possible
interpretation of inconsistent genetic results stems from
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the recognition that the SNPs used in GWAS high
throughput arrays are selected to be reliably assayed and
to provide a wide genomic coverage and high minor allele
frequency (>5 %). Hence, GWAS SNPs are rarely func-
tional SNPs. More commonly, a positive SNP from a
GWAS is co-inherited (in linkage disequilibrium (LD))
with a functional SNP. If the functional SNP is consist-
ently co-inherited with the GWAS SNP across ethnic
groups and races, then the GWAS SNP will be an efficient
proxy SNP for the functional SNP and show consistent as-
sociation with AD across cohorts. However, if the GWAS
SNP is not consistently co-inherited with the functional
SNP in different populations, the GWAS SNP will show
variable association with phenotype. Hence, inconsistent
follow-up results need to be carefully interpreted and un-
derstanding the functional effects associated with GWAS
SNPs is critical to integrate genetic findings into our un-
derstanding of AD.
Determining the relevance of AD genetics to AD

prevention or therapy requires knowledge of the SNP
actions. Association studies estimate the magnitude of
the polymorphism's effect on AD risk. To understand
the extent to which we need to impact the underlying
pathway to affect AD risk, we need to quantify the SNP
action on gene function. The critical factor here is that
many of the recent SNPs implicated by GWAS have
modest odds ratios for AD risk even without adjusting
for the winner’s curse [16]. Whether the products of
implicated genes represent robust drug targets depends
upon the molecular impact of the SNP on protein func-
tion. For example, if the genetic variant completely
inhibits the protein and yet has only a 0.9 odds ratio, the
protein may not be a robust drug target because
complete inhibition produces only a modest effect on
AD risk. Alternatively, if the genetic variant alters pro-
tein function by a modest 10 % and has a 0.9 odds ratio,
the protein may represent a robust drug target because a
drug could be developed that mimics the protective SNP
allele to a greater degree and thus could have a greater
effect on AD risk. This hypothesis has underlying
caveats, including that the dose-dependence of protein
function in AD risk does not reach a premature plateau,
that the protein is a suitable drug target, etc. However,
prima facie, a gene modulated by a SNP that has a mod-
est effect on function and a modest effect on AD risk
may represent a robust drug target. A secondary issue to
address is the thought process that a genetic-based ther-
apy will apply only to those with the AD-risk allele; this
is not necessarily accurate. An ideal intervention will not
only mimic the action of a protective allele, it will
amplify this effect and therefore may be applicable to
individuals regardless of their genotype. That said, the
intervention may have more impact on those with the
risk allele.

In summary, we present an analysis of the genetics of
inflammation and microglia in AD. This analysis focuses
upon genes selected by the criteria of (i) the genes con-
tain SNPs implicated in AD risk by compelling genetic
studies and (ii) the genes encode proteins that impact
microglial activation. These genes include TREM2,
CD33, CR1, ABCA7, SHIP1 and APOE. Aspects of AD
that are relevant but beyond this focus of inflammation
genetics, such as AD neuropathology or amyloid protein
precursor metabolism, are reviewed elsewhere [17–20].
Within our analysis of genetics, inflammation, microglia
and AD, we will discuss the biology of the relevant pro-
tein, the protein’s role in inflammation, and how these
proteins may interact to collectively modulate immune
function in the AD brain.

Review
TREM2
TREM2 (Triggering Receptor Expressed on Myeloid
cells 2) is a type 1 transmembrane receptor protein. In
mice, TREM2 is expressed in myeloid cells in the brain
and appears increased in microglia in the vicinity of pla-
ques in APP mice [21, 22]. Most but not all human brain
studies have suggested that TREM2 expression is within
microglia [23–26]. TREM2 expression increases with IL-4
exposure [27], suggesting that TREM2 expression may
be increased during alternative activation of microglia.
TREM2 ligands include anionic lipids and perhaps other

unknown elements from apoptotic neurons [28–31].
TREM2 lacks an extended cytosolic domain, signaling
through the immunoreceptor tyrosine-based activating
motif (ITAM) of its co-receptor, DAP12 [32, 33]. Acti-
vated TREM2 stimulates DAP12 through an intramem-
brane lysine residue, resulting in phosphorylation of the
DAP12 ITAM, and activation of the kinase Syk (Fig. 1,
[24, 34]). This leads to activation of PI3K, resulting in
actin rearrangement and phagocytic cup formation for tar-
get engulfment [35, 36]. TREM2-activated phagocytosis
occurs without a commensurate activation of cytokine
production [37]. Indeed, TREM2 activation actually
decreases cytokine production that occurs in response to
Toll-like receptor (TLR) activation [27, 38]. The acti-
vation of TREM2, Syk and phagocytosis is balanced by acti-
vation of phosphatases, most notably SHP-1, SHP-2,
and SHIP1 (encoded by the AD-risk gene INPP5D, see
below). Overall, TREM2 stimulation via apoptotic neuronal
fragments or TREM2 antibodies appears to result in activa-
tion of microglial phagocytosis with minimal changes in
cytokine levels.
Nonsense, missense, and splice site mutations in

TREM2 and its signaling partner DAP12 have been iden-
tified as causing Nasu-Hakola disease, a rare, autosomal
recessive syndrome marked by early-onset progressive
dementia and osteoclast dysfunction resulting in bone
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cysts [24, 39–42]. In 2012, a genome-wide search for AD
risk factors based on the Icelandic population found that
a TREM2 missense mutation, R47H (rs75932628), is a
significant AD risk factor [43]. This finding was comple-
mented by a large-scale companion study [44]. The odds
ratio associated with R47H was initially estimated at 3–4,
sparking great interest into TREM2 as a potentially robust
therapeutic target [43, 44]. Subsequent studies have con-
firmed the association but reduced the magnitude of this
odds ratio [45–52]. The R47H variant blunts the TREM2-
DAP12 response to anionic lipids [29]; therefore, the mu-
tation may reflect a stage of TREM2 function intermediate
between full function and the complete loss of function
that is associated with the recessive Nasu-Hakola disease.
While the role of TREM2 in phagocytosis may have

important implications for Aβ clearance in AD [53], the
R47H variant has also been implicated in Parkinson’s
disease and frontotemporal dementia (FTD), neither of
which centrally involves amyloid [54]. The Q33X non-
sense mutation, which appears to lead to loss of TREM2
function, is also associated with FTD risk [55]. There-
fore, TREM2-mediated phagocytosis may also target
neuronal debris that accumulates with normal synaptic
plasticity and with neuronal loss seen in neurodegenera-
tive disorders. Consistent with this possibility, TREM2-
transduced macrophages promote clearance of neuronal
debris and recovery in an animal model of multiple
sclerosis [56].
Based on these findings, many researchers speculate

that activators of TREM2 function or expression may
represent robust AD preventative and/or therapeutic
agents. However, some recent results have called this hy-
pothesis into question. An initial study by Ulrich et al.

showed that TREM2 hemizygosity does not affect the
prevalence of cortical plaques, soluble Aβ levels, or pro-
duction of inflammatory cytokines in APPPS1-21 mice
[57]. However, TREM2 hemizygosity does affect recruit-
ment of myeloid cells, presumed to be microglia, to pla-
ques [57]. A later report by Wang et al. involving 5xFAD
TREM2 knockout and hemizygous mice showed similar
results, with greatly reduced microglial clustering around
plaques in TREM2-depleted mice [29]. As many re-
searchers had initially hypothesized from the genetic
findings, this study found that TREM2-deficient mice
develop more plaques and higher soluble and insoluble
Aβ levels. However, this effect did not appear to be due
to differences in Aβ uptake or metabolism [29]. Instead,
TREM2 deletion resulted in decreased microgliosis and
microglial survival, at least in part due to decreased re-
sponse to CSF-1 [29].
In agreement with these two studies, an independ-

ent group found that in both 5xFAD and APP-PS1
mouse models, TREM2 knockout mice had negligible
immune cells clustering around plaques [58]. Surpris-
ingly, Jay et al. found that TREM2 deletion led to
decreased plaque levels in the hippocampus and un-
changed plaque levels in the cortex [58]. These amyloid
results appear incongruent with the study by Wang
et al. and with genetic findings that seem to point to a
protective role for TREM2 in neurodegenerative disease
[29, 55]. The reason for these discrepancies is unclear,
although one variable is that the two groups use differ-
ent TREM2 knockout strains: Jay et al. use a strain that
lacks exons 2–4, which encode the ligand binding do-
main through the cytosolic domain, while Wang et al.
use a strain that lacks exons 3–4, which encode a

Fig. 1 Several interactions have been reported between the AD risk genes involved in inflammation. TREM2 signals through the ITAM of DAP12 to
activate microglial phagocytosis; however, TREM2 expression has also been shown to dampen pro-inflammatory cytokine production activated by
TLRs. Activated CD33 recruits SHP-1 and SHP-2 to inhibit Syk signaling; CD33 has also been shown to antagonize CD14/TLR4 signaling. Sialylated apoE,
which complexes with Aβ, may serve as a CD33 ligand. ApoE appears to dampen TLR4 and TLR2 signaling and inhibit induction of pro-inflammatory
cytokines. SHIP1 antagonizes PI3K action by converting PIP3 to PIP2; SHIP1 has also been shown to bind to and antagonize TREM2 /DAP12 signaling in
osteoclasts. SHIP1 also complexes with CD2AP, another AD-implicated protein, to inhibit Syk ubiquitination and degradation. CR1 is a C3b/C4b receptor
that promotes phagocytosis; complement components have been shown to complex with Aβ. ABCA7 has been localized to phagocytic cups and linked
to Aβ clearance, although its mechanism of action is currently unknown. Proteins encoded by genes associated with AD risk by genetics are shown with
solid outlines; proteins that mediate these interactions are shown with dashed outlines
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portion of the TREM2 transmembrane and cytosolic
sequence [19] and could produce soluble TREM2.
Even more intriguingly, when Jay et al. examined the

“microglial” myeloid cells surrounding plaques in
TREM2-positive mice, they found that they had higher
CD45 expression than normal microglia, suggesting that
they might in fact be bone-marrow derived monocytes
infiltrating from the periphery [58]. The authors pro-
posed that the effects of TREM2 in AD are mediated by
infiltrating monocytes, rather than microglia: in fact,
they report that TREM2 expression in resident microglia
in the brain is undetectable by immunohistochemistry.
While awaiting further supporting evidence, this model
offers insight into therapeutic strategies for AD: pharma-
cologic agents may not need to cross the blood–brain
barrier to be effective but may be able to act on periph-
eral monocytes that then invade the brain. Overall, stud-
ies on TREM2 have focused unparalleled research
attention on this inflammation pathway, implicating
microglial activation in general and phagocytosis in par-
ticular as critical for healthy CNS aging.

CD33
CD33 is a type 1 transmembrane protein and member of
the sialic acid-binding immunoglobulin-like lectin
(SIGLEC) family of receptors (reviewed in [59]). In the
brain, CD33 is expressed largely in microglial cells [60, 61].
CD33 ligands appear to include sialylated cell surface
proteins acting in cis as well as other sialyated agents.
Many have suggested that CD33 (like other inhibitor
SIGLECs) functions to limit immune activation in re-
sponse to “self” macromolecules that bear a “self-asso-
ciated molecular pattern” of sialylation (reviewed in
[62]). Indeed, amyloid plaques may be “hidden” from
microglia because the plaque vicinity is rich in sialy-
lated agents including apoE, apoJ and gangliosides that
stimulate CD33 and thereby inhibit microglia [63–65].
Sialic acid binding activates CD33, resulting in phos-

phorylation of the CD33 immunoreceptor tyrosine-based
inhibitory motif (ITIM) domains and activation of the
SHP-1 and SHP-2 tyrosine phosphatases [66, 67]. These
phosphatases act on multiple substrates, including Syk, to
inhibit immune activation [68, 69]. Hence, CD33 activa-
tion leads to increased SHP-1 and SHP-2 activity that
antagonizes Syk, inhibiting ITAM-signaling proteins, pos-
sibly including TREM2/DAP12 (Fig. 1, [70, 71]). Consist-
ent with this possibility, long-term CD33 inhibition (by
antibodies or siRNA) induces production of cytokines
such as IL1β, TNFα, and IL-8 [72].
A polymorphism in the CD33 proximal promoter was

associated with AD risk in several, although not all gen-
ome wide studies [4, 6, 7, 73]. Recently, we and others
sought to identify the mechanism whereby rs3865444
modulates CD33 to alter AD risk [60, 61, 74–76]. CD33

expression in the brain is modestly increased in AD and
decreased with the minor, AD-protective rs3865444A al-
lele [60, 61, 76]. Increased CD33 expression was associ-
ated with reduced Aβ phagocytosis [60, 76]. This is
consistent with findings that CD33 activation by cell sur-
face sialic acids in cis leads to reduced cellular activation
[72, 77], as well as a report suggesting that CD33 nega-
tively regulates CD14, an Aβ receptor [78–80].
Pursuing these molecular actions further, we found that

the rs3865444A minor allele was associated with a robust
increase in the proportion of CD33 isoforms that lacked
exon 2 (D2-CD33) or retained intron 1; the former change
results in a translated CD33 protein that lacks its ligand-
binding IgV domain, while the latter change results in a
frameshift and premature stop codon [61, 74, 75, 81, 82].
Additionally, DNA sequencing established that rs12459419,
a SNP within CD33 exon 2, was in near- perfect LD with
rs3865444. In vitro minigene splicing studies demonstrated
that rs12459419 is a functional SNP that modulates the effi-
ciency of exon 2 splicing [61]. Since D2-CD33 lacks the
predicted sialic acid binding domain, D2-CD33 likely
encodes a non-functional protein ([81, 82], reviewed in
[59]); consistent with this possibility, Aβ42 uptake is inhib-
ited when BV-2 cells were transfected with CD33 but not
when cells were transfected with CD33 lacking the IgV
domain [60]. Overall, these results provide a genetic basis
to support a model wherein TREM2 and CD33 act in
opposing directions to modulate tyrosine phosphorylation
and, thereby, microglial activation and AD risk.
The utility of CD33 as a target for AD prevention or

therapy is an active research area. Of particular interest,
the mRNA splicing studies show that each minor allele of
the AD-associated SNP results in a 24 % decrease per al-
lele in CD33 mRNA including exon 2 and lacking intron 1
[75]. Hence, an AD odds ratio of ~0.89 correlated with a
~24 % reduction in RNA encoding functional CD33. This
suggests that more robust CD33 inhibition may reduce
AD risk further. This suggestion is supported further by
studies with CD33 deficient mice; these mice develop nor-
mally and yet have reduced amyloid accumulation [60,
83], suggesting that CD33 inhibition in humans may be
safe and robustly reduce AD risk. Recently, we showed the
CD33 antibody Lintuzumab, which has been used safely
in human acute myeloid leukemia trials, downregulates
cell surface CD33 up to 80 % in PMA-differentiated U937
cells in vitro [75]. Based on linear regression of the allelic
dose dependence for CD33 isoforms and AD risk, this 80
% reduction is calculated to reduce the AD odds ratio to
0.68, consistent with the possibility that this level of inhib-
ition could be clinically meaningful.

INPP5D (SHIP1)
The gene INPP5D encodes phosphatidylinositol-3,4,5-
trisphosphate-5-phosphatase 1, also known as SHIP1
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(SH2-containing inositol 5′ - phosphatase). Since SHIP1
is expressed in macrophage cell lines [84], SHIP1 may
be expressed in microglia in the brain. SHIP1 is a phos-
phatase that hydrolyzes PIP3 to PIP2 on the cytosolic
side of plasma membrane, counteracting PI3K induced
pathways [85]. The SHIP1 amino-terminal region con-
tains an SH2 domain that binds phosphorylated tyrosine
residues on ITIM- or ITAM-containing target proteins
[85–90]. SHIP1 has been shown to inhibit monocyte ac-
tivation and phagocytosis [68, 84, 91–95], in part by
transducing inhibitory signaling of FcγRIIB and other
ITIM-containing proteins. In dendritic cells, SHIP1
complexes with the AD-relevant protein CD2AP to inhibit
the ubiquitination of pro-inflammatory proteins Syk and
FcγRIIa [96]. SHIP1 also reduces NF-κB activation, which
has been shown to activate BACE1 expression in activated
astrocytes [97, 98]. Perhaps most relevant to AD, SHIP1
inhibits TREM2 signaling through DAP12 in osteoclasts,
dysfunction of which is another hallmark of Nasu-Hakola
disease [99]. Interestingly, SHIP1 does not appear to
inhibit the ITIM of CD33 [66, 100, 101].
An INPP5D polymorphism, rs35349669, has recently

been associated with AD risk [4]. SHIP1 transcription is
initiated at multiple start sites; initiation at an internal
site results in production of a protein lacking the SH2
domain [102]. Rs35349669 is near this internal transcrip-
tion start site, suggesting that this SNP may modulate
production of a SHIP1 transcript lacking the SH2 do-
main. Understanding the actions of the AD-associated
SNP rs35349669 may be critical to understanding the
role of SHIP1 in AD. Overall, SHIP1 appears to trans-
duce inhibitory signaling of some ITIM-containing pro-
teins and to inhibit signaling of ITAM-containing
proteins, such as DAP12. Hence, SHIP1 is anti-
inflammatory and anti-phagocytic.

CR1
CR1 (Complement Receptor 1) regulates the comple-
ment system, a division of the body’s innate immune re-
sponse that orchestrates phagocytosis and lysis of cells
bearing foreign antigens. CR1 is expressed on some leu-
kocytes in the periphery, as well as the choroid plexus,
microglia, and neurons in the brain [103, 104]. CR1 acts
as both a positive and negative regulator of the comple-
ment pathways by binding to the C3b/C4b peptides,
stimulating (i) opsonization and clearance of immune
complexes and (ii) destabilization of the C3 and C5 con-
vertases, preventing further complement activation.
The complement pathway has been associated with

AD since the 1982 when complement factors were found
in amyloid plaques [105]. The complement protein C1q
was subsequently shown to bind Aβ, leading to comple-
ment activation and inflammation [106]. Addition of
C1q to solubilized Aβ1-42 promotes Aβ aggregate

formation [107]. Subsequent studies found that comple-
ment pathway proteins are upregulated in AD brain
[108], and that C3b binding to Aβ leads to inflammation
and neuronal lysis (reviewed in [109]). However, some
studies have found that the complement cascade can
have neuroprotective effects: the complement protein
C5a has been shown to activate MAPK, protecting neu-
rons and reducing hippocampal lesions in mouse models
[109]. Recent results suggest that CR1 has a mixture of
neuroprotective and neurodegenerative effects in AD:
antagonizing CR1 prevents Aß phagocytosis by primary
rat microglia, but also blocks microglial production of
superoxide species and the pro-inflammatory cytokines
TNFα and IL-1β. Blockage of CR1 also prevents neuronal
death when neurons are treated with microglial conditioned
media [110]. These data suggest that CR1 activation may
be beneficial to clear Aβ at early disease stages but exacer-
bate inflammation once amyloid deposits have appeared.
SNPs in CR1 have been associated with AD risk in

GWAS since 2009 [1, 4, 6, 7]. The search for functional
SNPs that mediate this association with AD has revealed
two candidates. First, a rare coding SNP rs4844609
(S1610T) was associated with several indices of AD
pathology [111]; however, these initial associations were
not replicated in an independent cohort [112]. Second,
AD-associated SNPs from GWAS such as rs4844610
were associated with a copy number variant (CNV) that
modulates the production of two CR1 isoforms: a larger
isoform designated CR1-S (slow migrating on gel elec-
trophoresis) and a smaller isoform designated CR1-F
(fast migrating) [113]. The larger CR1-S isoform, which
has a 15 % frequency and associates with increased AD
risk, contains two copies of low copy repeat 1 and there-
fore encodes more C3b/C4b binding sites than the
smaller CR1-F [113]. This CNV is a better predictor of
AD risk than the GWAS-implicated SNP rs4844610,
suggesting that CR1 genetics modulate AD risk through
the functional CR1 CNV [104]. The action of CR1-S in
AD is still unclear: one possibility is that since CR1-S
encodes more C3b/C4b binding sites, CR1-S leads to
increased complement activation and inflammation and
thereby increases AD risk [104, 113]. However, studies
have also shown that CR1-S carriers have lower overall
CR1 protein expression: therefore, AD risk might be
conferred through lower CR1 expression leading to de-
creased complement activation and impaired clearance
of Aβ [104, 114]. Hence, whether CR1 and complement
activation are beneficial or deleterious for AD is cur-
rently unclear and requires further study.

ABCA7
ABCA7 is a member of the ATP-binding cassette super-
family of transporters that is expressed in the periphery
in the spleen, thymus, and bone marrow, as well as in
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microglia in the brain [115, 116]. ABCA7 was initially
thought to modulate lipid homeostasis and was found to
transport phospholipids across inner and outer plasma
membrane leaflets [117–119]. However, the C. elegans
ABCA7 homolog, ced-7, is responsible for apoptotic cell
engulfment [120]. In fact, ABCA7 has been localized to
the phagocytic cups of activated microglia, although the
underlying mechanism is not fully understood [120].
Consistent with the possibility that ABCA7 may modu-
late lipid transport and thereby contribute to phagocyt-
osis, Rong et al. observed that inflammation modulates
membrane phospholipid composition, thus affecting the
function of membrane proteins [121]. Moreover, Kim
et al. showed ABCA7 deficiency resulted in increased
Aβ deposition, suggesting a decrease in phagocytic clear-
ance [122]. Taken together, these findings support the
possibility that ABCA7 reduces AD risk by contributing
to phagocytic cup formation and Aβ clearance (Fig. 1).
Several ABCA7 SNPs, including rs3764650, have been

associated with AD in initial and replicative GWAS [4, 7].
The mechanisms underlying this association are unclear.
We recently reported that the AD-protective rs3764650
allele was associated with increased ABCA7 expression
[123], leading us to hypothesize that the SNP-associated
increase in ABCA7 expression protects from AD. We also
saw an increase in ABCA7 expression in AD brains that
we attributed to an increase in inflammation in AD, not-
ing that ABCA7 expression is increased as monocytes dif-
ferentiate into macrophages and, interestingly, by LDL
[115]. A recent study of an Icelandic population showed
that rare loss-of-function variants in ABCA7 confer an
increased risk of AD, with a combined odds ratio of 2.1.
In replication populations, this striking association held
true with an odds ratio of 1.7. One of these variants,
rs200538373, promotes retention of a short intronic se-
quence after exon 41, resulting in a premature stop codon
[124]. Hence, an apparent loss of ABCA7 function in-
creases AD risk while increased ABCA7 expression is as-
sociated with reduced AD risk.

APOE
While these recent genetic studies have focused new at-
tention upon genes that are critical to neuroinflamma-
tion, APOE polymorphisms have also been suggested to
differentially affect inflammation. Of the three common
APOE alleles, APOE4 raises AD risk and reduces age of
AD onset, while APOE2 lowers AD risk and increases
age of onset [125]. In the CNS, APOE is primarily
expressed by astrocytes [126], as well as by microglia
and ependymal cells and, under certain conditions of
neurotoxicity, by neurons [127]. ApoE functions in the
transport of cholesterol (reviewed in [128]), and is im-
portant for the redistribution of lipids within the CNS,

including delivery of cholesterol and phospholipids to
neurons.
In addition to its function in lipid transport, apoE is an

anti-inflammatory agent. Evidence supporting this perspec-
tive includes that apoE deficiency exacerbates neuroinflam-
mation in several rodent injury models including ischemia
[129], experimental autoimmune encephalomyelitis [130],
traumatic brain injury [131], and induced neuroinflamma-
tion [132]. Moreover, apoE deficiency was associated with a
reduced clearance of neuronal debris in a model of entorhi-
nal cortex lesion, suggesting that apoE contributes to the
clearance of cholesterol-rich neuronal breakdown products
[133]. Conversely, an apoE mimetic peptide decreased dam-
age in traumatic brain injury [134], increased axonal regen-
eration after peripheral nerve injury [135], and decreased
lesion volume after focal ischemia [136].
Compared to APOE3, APOE4 is associated with a re-

duced ability to suppress inflammatory stimuli both
in vivo and in vitro (reviewed in [137]). In models
comparing APOE-knockout (KO) mice to human APOE-
targeted replacement (TR) mice, APOE4 appears to rep-
resent a loss of positive function rather than a gain of
negative function. For example, in APOE-TR mice
treated with intracerebroventricular (ICV) injections of
lipopolysaccharide (LPS), levels of activated microglia,
astrocytes, invading T-cells and cytokines (IL-1β, and
TNFα), and synaptic protein loss were greater in APOE-
KO >APOE4-TR >APOE3-TR >APOE2-TR [138]. Simi-
larly, in the periphery, proinflammatory stimuli induced
an increase in IL-1β release in APOE-KO >APOE4-TR >
APOE3-TR >APOE2-TR [139]. Peripheral LPS injection
also induces higher TNFα levels in APOE4-TR compared
to APOE3-TR mice [140, 141], while TNFα, IL-6, and
IL-1β are greater in APOE-KO mice compared to wild
type mice [132]. Although the literature is sparse on
APOE isoform-specific effects on Aß-induced neuroin-
flammation, evidence supports that APOE4 modulates
Aß-induced neuroinflammation in vivo. E4FAD mice
(APOE-TR mice crossed with 5xFAD mice) [142] exhibit
greater microgliosis and astrogliosis around cortical Aβ
deposits compared to E3FAD [143]. Multiplex analysis
of mRNA levels for neuroinflammatory markers in
the cortex of EFAD mice at 6 and 8 months revealed
that in 6 month E4FAD mice, select markers related
to TLR4 signaling are higher, while IL-4R and related
markers are lower compared to E3FAD mice; these
age- and APOE-dependent effects suggest an APOE3-
specific adaptive response lacking with APOE4 [137].
These in vivo findings that apoE promotes an anti-

inflammatory state and that apoE4 is a less effective
anti-inflammatory agent than apoE3 are recapitu-
lated in vitro. In response to LPS stimulation, TNFα
and IL-6 are upregulated in APOE-KO glial cells com-
pared to wild type [132], while nitric oxide levels are
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increased in APOE-KO but not APOE3-TR mixed glial
cultures [144]. In primary microglia, an apoE-mimetic
peptide inhibits LPS-induced JNK activation through inter-
actions with the LDL receptor family members [145, 146].
APOE deletion has also been shown to upregulate TLR4
and TLR2 and enhance TLR signaling [147, 148]. Com-
pared to apoE3, apoE4 increases cytokine production in
both LPS-treated peripheral immune cells [132, 133] and
LPS- and Aß-treated mixed glial cultures [137, 149, 150].
LPS and oligomeric Aβ-induced TNFα secretion are
inhibited by TLR4 antagonists in mixed glial cultures,
consistent with APOE isoform specific effects on TLR4
signaling in vivo [137, 149, 150]. APOE4 alleles also
dose-dependently increase nitric oxide production in
microglial cultures [141].
Overall, the distinction that APOE4 represents a loss

of positive function in neuroinflammation rather than a
gain of negative function is important with respect to
development of AD treatment strategies, suggesting that
APOE4 carriers would benefit from strategies designed
to correct the structure/function of apoE4 rather than
eliminate apoE4.

Proposed Model Integrating Genetics, Neuroinflammation
and AD Risk
We propose a testable model wherein each AD genetic
risk factor considered here is integrated into a coherent
model wherein AD risk is modulated by immune activa-
tion. We depict activation as defined by promoting
phagocytosis and cytokine production (Fig. 1). We
recognize that microglial cytokine production has di-
verse effects in AD; these effects have been reviewed
elsewhere [151].
Hence, we suggest the following:

TREM2
Neuronal debris and perhaps other lipid-rich ligands ac-
tivate TREM2, which promotes microglial phagocytosis
through the ITAM domain of its co-factor, DAP12 and
the downstream effector, Syk [28]. We hypothesize that
enhanced TREM2 function reduces AD risk, although as
discussed above, this hypothesis is not supported by all
current data [29, 57, 58].

CD33
Sialic acid-rich areas, such as the vicinity of plaques,
stimulate CD33 signaling, leading to activation of the
CD33 ITIM, which, in turn activates SHP-1 to inhibit
microglial activation, particularly TREM2 signaling via
Syk [70, 71]. ApoE is an abundant sialylated protein in
the vicinity of plaques and hence could contribute to
this action [63–65]. The AD-protective SNP allele re-
duces the proportion of CD33 encoding functional

CD33 and thereby effectively inhibits CD33 to promote
microglial activation [60, 61, 74–76].

INPP5D (SHIP1)
The SH2-containing SHIP1 isoform moves from the
cytosol to the cell surface to bind the phosphorylated
ITAM of DAP12 to inhibit TREM2 signaling [99]. SHIP1
also antagonizes the action of PI3K, an important medi-
ator of phagocytosis [95]. We hypothesize that the risk
allele of the AD-associated SNP will increase expression
of SHIP1 or a SHIP1 isoform.

CR1
This receptor is stimulated by C3b and C4b, which may
bind to Aβ to promote inflammation and/or phagocytosis.
The CR1 GWAS signal is most likely due to a CNV which
modulates the proportion of the two CR1 isoforms: the
shorter CR1-F and longer CR1-S [113]. The CR1-S iso-
form, which increases AD risk, has more ligand-binding
sites but also leads to decreased overall expression; there-
fore, it is unclear whether CR1 activation is beneficial or
deleterious for AD risk [104, 113, 114].

ABCA7
This phagocytic cup protein is critical to phagocytosis of
substrates such as apoptotic cells [120]. The AD-risky

Fig. 2 Microglial activation can be neuroprotective and/or
neurotoxic; the actions of AD risk proteins modulate these effects.
The normal actions of CD33 and SHIP1 (encoded by INPP5D) appear
to antagonize both forms of microglial activation, while CR1 action
appears to promote both Aβ phagocytosis and the production of
neurotoxic pro-inflammatory cytokines such as TNF. TREM2 appears
to promote phagocytosis while dampening pro-inflammatory cyto-
kine production. ABCA7 helps to mediate phagocytosis. APOE2 and
APOE3 are anti-inflammatory, while APOE4 promotes inflammation
and neurotoxicity
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allele of rs3764650 was associated with modestly de-
creased ABCA7 expression [7, 123]. More strikingly, rare
nonsense SNPs were associated with a more robust AD
odds ratio [124]. Overall, decreased ABCA7 is hypothe-
sized to reduce phagocytosis and thereby increase AD
risk.

APOE
This protein promotes an anti-inflammatory state, with
apoE4 being less effective than apoE3, which is less ef-
fective than apoE2. Hence, we propose that the AD risk
associated with apoE4 is due, at least in part, to in-
creased pro-inflammatory microglial activation with re-
duced phagocytosis. Conversely, apoE2 reduces AD risk
relative to apoE3 by promoting an anti-inflammatory
state, perhaps with increased phagocytosis. These apoE
allelic actions could occur in parallel with other apoE
allele-dependent mechanisms that also modulate AD, in-
cluding differential ability to serve as an Aß chaperone
(reviewed in [128]).
In aggregate, we propose that microglial activation

state reflects a homeostatic balance between proteins
like CD33 and SHIP1 that inhibit all microglial activa-
tion, proteins like TREM2 that promote phagocytic ac-
tivity without inflammatory cytokines, and proteins like
CR1 that are non-specific immune activators. We would
also group apoE4 in the last category, relative to the im-
munosuppressive activities of apoE3 and, progressively,
apoE2 (Fig. 2).

Conclusions
Genetics has certainly ignited interest in the role of in-
flammation as a modulator of AD pathogenesis and risk.
Along with this interest has come renewed appreciation
that immune activation represents a “double-edged
sword” in that activation can be neuroprotective by pro-
moting phagocytosis and clearance of cellular debris and
Aβ, but also neurotoxic by promoting pro-inflammatory
cytokine production, oxidative stress, and neuronal
death. While the actions of some AD-relevant agents,
such as TREM2 polarize towards a protective phenotype,
other agents, such as CD33, CR1, and SHIP1 (INPP5D)
seem to modulate both “types” of inflammation concur-
rently, suggesting that these two phenotypes may not in
fact be distinct or separable [152].
Since the actions of several AD-associated SNPs are

still unknown, further research into SNP effects on gene
expression and protein function is needed to gain clarity.
However, even where there is widespread agreement in
the field as to the effect of a genetic variant, results from
different variants tell different tales. For example, CD33
inactivation and APOE4 seem to have similar effects on
TLR activation and pro-inflammatory cytokine induction
[72, 78] but genetic data tell us that CD33 inactivation is

AD-protective while APOE4 is of course risky [141, 147].
This suggests that an agent that generally modulates
even one facet of microglial activation, such as TLR
function or phagocytosis, may not be useful as an AD
therapeutic: currently, the field has not yet determined
with certainty that any particular microglial function is
“good” or “bad” for AD risk. However, we can currently
be confident that a genetic risk factor discovered in un-
biased, large-scale human studies is protective or risky
for AD. This is in part why genetic risk factors offer such
great promise as therapeutic targets and research tools,
and why it is so critical to understand their effects.
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