347 research outputs found

    Effectiveness of compression stockings to prevent the post-thrombotic syndrome (The SOX Trial and Bio-SOX biomarker substudy): a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Post thrombotic syndrome (PTS) is a burdensome and costly complication of deep venous thrombosis (DVT) that develops in 20–40% of patients within 1–2 years after symptomatic DVT. Affected patients have chronic leg pain and swelling and may develop ulcers. Venous valve disruption from the thrombus itself or thrombus-associated mediators of inflammation is considered to be a key initiating event for the development of venous hypertension that often underlies PTS. As existing treatments for PTS are extremely limited, strategies that focus on preventing the development of PTS in patients with DVT are more likely to be effective and cost-effective in reducing its burden. Elastic compression stockings (ECS) could be helpful in preventing PTS; however, data on their effectiveness are scarce and conflicting.</p> <p>Methods/Design</p> <p>The SOX Trial is a randomized, allocation concealed, double-blind multicenter clinical trial. The objective of the study is to evaluate ECS to prevent PTS. A total of 800 patients with proximal DVT will be randomized to one of 2 treatment groups: ECS or placebo (inactive) stockings worn on the DVT-affected leg daily for 2 years. The primary outcome is the incidence of PTS during follow-up. Secondary outcomes are severity of PTS, venous thromboembolism (VTE) recurrence, death from VTE, quality of life and cost-effectiveness. Outcomes will be evaluated during 6 clinic visits and 2 telephone follow ups. At baseline, 1 and 6 months, blood samples will be obtained to evaluate the role of inflammatory mediators and genetic markers of thrombophilia in the development of PTS (Bio-SOX substudy).</p> <p>Discussion</p> <p>The SOX Trial will be the largest study and the first with a placebo control to evaluate the effectiveness of ECS to prevent PTS. It is designed to provide definitive data on the effects of ECS on the occurrence and severity of PTS, as well as DVT recurrence, cost-effectiveness and quality of life. This study will also prospectively evaluate the predictive role of biomarkers that are reflective of putative underlying pathophysiological mechanisms in the development of clinical PTS. As such, our results will impact directly on the care of patients with DVT.</p> <p>Trial Registration</p> <p>NCT00143598 and ISRCTN71334751</p

    A Naturally Occurring Bovine Tauopathy Is Geographically Widespread in the UK

    Get PDF
    Many human neurodegenerative diseases are associated with hyperphosphorylation and widespread intra-neuronal and glial associated aggregation of the microtubule associated protein tau. In contrast, animal tauopathies are not reported with only senescent animals showing inconspicuous tau labelling of fine processes albeit significant tau aggregation may occur in some experimental animal disease. Since 1986, an idiopathic neurological condition of adult cattle has been recognised in the UK as a sub-set of cattle slaughtered as suspect bovine spongiform encephalopathy cases. This disorder is characterised by brainstem neuronal chromatolysis and degeneration with variable hippocampal sclerosis and spongiform change. Selected cases of idiopathic brainstem neuronal chromatolysis (IBNC) were identified from archive material and characterised using antibodies specific to several tau hyperphosphorylation sites or different isoforms of the tau microtubule binding region. Labelling was also carried out for alpha synuclein, ubiquitin, TDP43, Aβ 1-42, Aβ 1-40. Widespread tau labelling was identified in all IBNC brains examined and with each of seven tau antibodies recognising different hyperphosphorylated sites. Labelling with each antibody was associated with dendrites, neuronal perikarya and glia. Thus IBNC is a sporadic, progressive neurological disease predominantly affecting aged cattle that occurs throughout the UK and is associated with hyperphosphorylation of tau, a rare example of a naturally-occurring tauopathy in a non-primate species. Secondary accumulation of alpha synuclein and ubiquitin was also present. The neuropathology does not precisely correspond with any human tauopathy. The cause of IBNC remains undetermined but environmental factors and exposure to agrochemicals needs to be considered in future aetiological investigations

    Human PrP90-231-induced cell death is associated with intracellular accumulation of insoluble and protease-resistant macroaggregates and lysosomal dysfunction

    Get PDF
    To define the mechanisms by which hPrP90-231 induces cell death, we analyzed its interaction with living cells and monitored its intracellular fate. Treatment of SH-SY5Y cells with fluorescein-5-isothiocyanate (FITC)-conjugated hPrP90-231 caused the accumulation of cytosolic aggregates of the prion protein fragment that increased in number and size in a time-dependent manner. The formation of large intracellular hPrP90-231 aggregates correlated with the activation of apoptosis. hPrP90-231 aggregates occurred within lysotracker-positive vesicles and induced the formation of activated cathepsin D (CD), indicating that hPrP90-231 is partitioned into the endosomal–lysosomal system structures, activating the proteolytic machinery. Remarkably, the inhibition of CD activity significantly reduced hPrP-90-231-dependent apoptosis. Internalized hPrP90-231 forms detergent-insoluble and SDS-stable aggregates, displaying partial resistance to proteolysis. By confocal microscopy analysis of lucifer yellow (LY) intracellular partition, we show that hPrP90-231 accumulation induces lysosome destabilization and loss of lysosomal membrane impermeability. In fact, although control cells evidenced a vesicular pattern of LY fluorescence (index of healthy lysosomes), hPrP90-231-treated cells showed diffuse cytosolic fluorescence, indicating LY diffusion through damaged lysosomes. In conclusion, these data indicate that exogenously added hPrP90-231 forms intralysosomal deposits having features of insoluble, protease-resistant aggregates and could trigger a lysosome-mediated apoptosis by inducing lysosome membrane permeabilization, followed by the release of hydrolytic enzymes

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Elevated Expression of Stromal Palladin Predicts Poor Clinical Outcome in Renal Cell Carcinoma

    Get PDF
    The role that stromal renal cell carcinoma (RCC) plays in support of tumor progression is unclear. Here we sought to determine the predictive value on patient survival of several markers of stromal activation and the feasibility of a fibroblast-derived extracellular matrix (ECM) based three-dimensional (3D) culture stemming from clinical specimens to recapitulate stromal behavior in vitro. The clinical relevance of selected stromal markers was assessed using a well annotated tumor microarray where stromal-marker levels of expression were evaluated and compared to patient outcomes. Also, an in vitro 3D system derived from fibroblasts harvested from patient matched normal kidney, primary RCC and metastatic tumors was employed to evaluate levels and localizations of known stromal markers such as the actin binding proteins palladin, alpha-smooth muscle actin (α-SMA), fibronectin and its spliced form EDA. Results suggested that RCCs exhibiting high levels of stromal palladin correlate with a poor prognosis, as demonstrated by overall survival time. Conversely, cases of RCCs where stroma presents low levels of palladin expression indicate increased survival times and, hence, better outcomes. Fibroblast-derived 3D cultures, which facilitate the categorization of stromal RCCs into discrete progressive stromal stages, also show increased levels of expression and stress fiber localization of α-SMA and palladin, as well as topographical organization of fibronectin and its splice variant EDA. These observations are concordant with expression levels of these markers in vivo. The study proposes that palladin constitutes a useful marker of poor prognosis in non-metastatic RCCs, while in vitro 3D cultures accurately represent the specific patient's tumor-associated stromal compartment. Our observations support the belief that stromal palladin assessments have clinical relevance thus validating the use of these 3D cultures to study both progressive RCC-associated stroma and stroma-dependent mechanisms affecting tumorigenesis. The clinical value of assessing RCC stromal activation merits further study

    PRMT1-dependent regulation of RNA metabolism and DNA damage response sustains pancreatic ductal adenocarcinoma

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer that has remained clinically challenging to manage. Here we employ an RNAi-based in vivo functional genomics platform to determine epigenetic vulnerabilities across a panel of patient-derived PDAC models. Through this, we identify protein arginine methyltransferase 1 (PRMT1) as a critical dependency required for PDAC maintenance. Genetic and pharmacological studies validate the role of PRMT1 in maintaining PDAC growth. Mechanistically, using proteomic and transcriptomic analyses, we demonstrate that global inhibition of asymmetric arginine methylation impairs RNA metabolism, which includes RNA splicing, alternative polyadenylation, and transcription termination. This triggers a robust downregulation of multiple pathways involved in the DNA damage response, thereby promoting genomic instability and inhibiting tumor growth. Taken together, our data support PRMT1 as a compelling target in PDAC and informs a mechanism-based translational strategy for future therapeutic development. Statement of significance PDAC is a highly lethal cancer with limited therapeutic options. This study identified and characterized PRMT1-dependent regulation of RNA metabolism and coordination of key cellular processes required for PDAC tumor growth, defining a mechanism-based translational hypothesis for PRMT1 inhibitors

    Arctic Sea Ice in Transformation: A Review of Recent Observed Changes and Impacts on Biology and Human Activity

    Get PDF
    Sea ice in the Arctic is one of the most rapidly changing components of the global climate system. Over the past few decades, summer areal extent has declined over 30, and all months show statistically significant declining trends. New satellite missions and techniques have greatly expanded information on sea ice thickness, but many uncertainties remain in the satellite data and long-term records are sparse. However, thickness observations and other satellite-derived data indicate a 40 decline in thickness, due in large part to the loss of thicker, older ice cover. The changes in sea ice are happening faster than models have projected. With continued increasing temperatures, summer ice-free conditions are likely sometime in the coming decades, though there are substantial uncertainties in the exact timing and high interannual variability will remain as sea ice decreases. The changes in Arctic sea ice are already having an impact on flora and fauna in the Arctic. Some species will face increasing challenges in the future, while new habitat will open up for other species. The changes are also affecting peoples living and working in the Arctic. Native communities are facing challenges to their traditional ways of life, while new opportunities open for shipping, fishing, and natural resource extraction

    Can Current Moisture Responses Predict Soil CO2 Efflux Under Altered Precipitation Regimes? A Synthesis of Manipulation Experiments

    Get PDF
    As a key component of the carbon cycle, soil CO2 efflux (SCE) is being increasingly studied to improve our mechanistic understanding of this important carbon flux. Predicting ecosystem responses to climate change often depends on extrapolation of current relationships between ecosystem processes and their climatic drivers to conditions not yet experienced by the ecosystem. This raises the question to what extent these relationships remain unaltered beyond the current climatic window for which observations are available to constrain the relationships. Here, we evaluate whether current responses of SCE to fluctuations in soil temperature and soil water content can be used to predict SCE under altered rainfall patterns. Of the 58 experiments for which we gathered SCE data, 20 were discarded because either too few data were available, or inconsistencies precluded their incorporation in the analyses. The 38 remaining experiments were used to test the hypothesis that a model parameterized with data from the control plots (using soil temperature and water content as predictor variables) could adequately predict SCE measured in the manipulated treatment. Only for seven of these 38 experiments, this hypothesis was rejected. Importantly, these were the experiments with the most reliable datasets, i.e., those providing high-frequency measurements of SCE. Accordingly, regression tree analysis demonstrated that measurement frequency was crucial; our hypothesis could be rejected only for experiments with measurement intervals of less than 11 days, and was not rejected for any of the 24 experiments with larger measurement intervals. This highlights the importance of high-frequency measurements when studying effects of altered precipitation on SCE, probably because infrequent measurement schemes have insufficient capacity to detect shifts in the climate-dependencies of SCE. We strongly recommend that future experiments focus more strongly on establishing response functions across a broader range of precipitation regimes and soil moisture conditions. Such experiments should make accurate measurements of water availability, they require high-frequency SCE measurements and they should consider both instantaneous responses and the potential legacy effects of climate extremes. This is important, because we demonstrated that at least for some ecosystems, current moisture responses cannot be extrapolated to predict SCE under altered rainfall
    corecore