158 research outputs found

    High-Temperature Optical Sensor

    Get PDF
    A high-temperature optical sensor (see Figure 1) has been developed that can operate at temperatures up to 1,000 C. The sensor development process consists of two parts: packaging of a fiber Bragg grating into a housing that allows a more sturdy thermally stable device, and a technological process to which the device is subjected to in order to meet environmental requirements of several hundred C. This technology uses a newly discovered phenomenon of the formation of thermally stable secondary Bragg gratings in communication-grade fibers at high temperatures to construct robust, optical, high-temperature sensors. Testing and performance evaluation (see Figure 2) of packaged sensors demonstrated operability of the devices at 1,000 C for several hundred hours, and during numerous thermal cycling from 400 to 800 C with different heating rates. The technology significantly extends applicability of optical sensors to high-temperature environments including ground testing of engines, flight propulsion control, thermal protection monitoring of launch vehicles, etc. It may also find applications in such non-aerospace arenas as monitoring of nuclear reactors, furnaces, chemical processes, and other hightemperature environments where other measurement techniques are either unreliable, dangerous, undesirable, or unavailable

    The Transcriptional Cofactor Nab2 Is Induced by TGF-β and Suppresses Fibroblast Activation: Physiological Roles and Impaired Expression in Scleroderma

    Get PDF
    By stimulating collagen synthesis and myofibroblasts differentiation, transforming growth factor-β (TGF- β) plays a pivotal role in tissue repair and fibrosis. The early growth response-1 (Egr-1) transcription factor mediates profibrotic TGF-β responses, and its expression is elevated in biopsies from patients with scleroderma. NGF1-A-binding protein 2 (Nab2) is a conserved transcriptional cofactor that directly binds to Egr-1 and positively or negatively modulates Egr-1 target gene transcription. Despite the recognized importance of Nab2 in governing the intensity of Egr-1-dependent responses, the regulation and function of Nab2 in the context of fibrotic TGF-β signaling is unknown. Here we show that TGF-β caused a time-dependent stimulation of Nab2 protein and mRNA in normal fibroblasts. Ectopic expression of Nab2 in these cells blocked Egr-1-dependent transcriptional responses, and abrogated TGF-β-induced stimulation of collagen synthesis and myofibroblasts differentiation. These inhibitory effects of Nab2 involved recruitment of the NuRD chromatin remodeling complex to the COL1A2 promoter and were accompanied by reduced histone H4 acetylation. Mice with targeted deletion of Nab2 displayed increased collagen accumulation in the dermis, and genetic or siRNA-mediated loss of Nab2 in fibroblasts was associated with constitutively elevated collagen synthesis and accentuation of Egr-1-dependent TGF-β responses in vitro. Expression of Nab2 was markedly up-regulated in skin biopsies from patients with scleroderma, and was localized primarily to epidermal keratinocytes. In contrast, little Nab2 could be detected in dermal fibroblasts. These results identify Nab2 as a novel endogenous negative regulator of Egr-1-dependent TGF-β signaling responsible for setting the intensity of fibrotic responses. Defective Nab2 expression or function in dermal fibroblasts might play a role in persistent fibrotic responses in scleroderma

    System size and centrality dependence of the balance function in A+A collisions at sqrt[sNN]=17.2 GeV

    Get PDF
    Electric charge correlations were studied for p+p, C+C, Si+Si, and centrality selected Pb+Pb collisions at sqrt[sNN]=17.2 GeV with the NA49 large acceptance detector at the CERN SPS. In particular, long-range pseudorapidity correlations of oppositely charged particles were measured using the balance function method. The width of the balance function decreases with increasing system size and centrality of the reactions. This decrease could be related to an increasing delay of hadronization in central Pb+Pb collisions

    Impact of oral cyclophosphamide on health-related quality of life in patients with active scleroderma lung disease: Results from the scleroderma lung study

    Full text link
    Objective To assess the impact of cyclophosphamide (CYC) on the health-related quality of life (HRQOL) of patients with scleroderma after 12 months of treatment. Methods One hundred fifty-eight subjects participated in the Scleroderma Lung Study, with 79 each randomized to CYC and placebo arms. The study evaluated the results of 3 measures of health status: the Short Form 36 (SF-36), the Health Assessment Questionnaire (HAQ) disability index (DI), and Mahler's dyspnea index, and the results of 1 preference-based measure, the SF-6D. The differences in the HRQOL between the 2 groups at 12 months were calculated using a linear mixed model. Responsiveness was evaluated using the effect size. The proportion of subjects in each treatment group whose scores improved at least as much as or more than the minimum clinically important difference (MCID) in HRQOL measures was assessed. Results After adjustment for baseline scores, differences in the HAQ DI, SF-36 role physical, general health, vitality, role emotional, mental health scales, and SF-36 mental component summary (MCS) score were statistically significant for CYC versus placebo ( P < 0.05). Effect sizes were negligible (<0.20) for all of the scales of the SF-36, HAQ DI, and SF-6D at 12 months. In contrast, a higher proportion of patients who received CYC achieved the MCID compared with placebo in the HAQ DI score (30.9% versus 14.8%), transitional dyspnea index score (46.4% versus 12.7%), SF-36 MCS score (33.3% versus 18.5%), and SF-6D score (21.3% versus 3.8%). Conclusion One year of treatment with CYC leads to an improvement in HRQOL in patients with scleroderma lung disease.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/56039/1/22580_ftp.pd

    Dark energy survey year 1 results: curved-sky weak lensing mass map

    Get PDF
    We construct the largest curved-sky galaxy weak lensing mass map to date from the DES first-year (DES Y1) data. The map, about 10 times larger than the previous work, is constructed over a contiguous ≈1500 deg2, covering a comoving volume of ≈10 Gpc3. The effects of masking, sampling, and noise are tested using simulations. We generate weak lensing maps from two DES Y1 shear catalogues, METACALIBRATION and IM3SHAPE, with sources at redshift 0.2 < z < 1.3, and in each of four bins in this range. In the highest signal-to-noise map, the ratio between the mean signal to noise in the E-mode map and the B-mode map is ∼1.5 (∼2) when smoothed with a Gaussian filter of σG = 30 (80) arcmin. The second and third moments of the convergence κ in the maps are in agreement with simulations. We also find no significant correlation of κ with maps of potential systematic contaminants. Finally, we demonstrate two applications of the mass maps: (1) cross-correlation with different foreground tracers of mass and (2) exploration of the largest peaks and voids in the maps

    Detection of the significant impact of source clustering on higher-order statistics with DES Year 3 weak gravitational lensing data

    Full text link
    We demonstrate and measure the impact of source galaxy clustering on higher-order summary statistics of weak gravitational lensing data. By comparing simulated data with galaxies that either trace or do not trace the underlying density field, we show this effect can exceed measurement uncertainties for common higher-order statistics for certain analysis choices. Source clustering effects are larger at small scales and for statistics applied to combinations of low and high redshift samples, and diminish at high redshift. We evaluate the impact on different weak lensing observables, finding that third moments and wavelet phase harmonics are more affected than peak count statistics. Using Dark Energy Survey Year 3 data we construct null tests for the source-clustering-free case, finding a pp-value of p=4×103p=4\times10^{-3} (2.6 σ\sigma) using third-order map moments and p=3×1011p=3\times10^{-11} (6.5 σ\sigma) using wavelet phase harmonics. The impact of source clustering on cosmological inference can be either be included in the model or minimized through \textit{ad-hoc} procedures (e.g. scale cuts). We verify that the procedures adopted in existing DES Y3 cosmological analyses (using map moments and peaks) were sufficient to render this effect negligible. Failing to account for source clustering can significantly impact cosmological inference from higher-order gravitational lensing statistics, e.g. higher-order N-point functions, wavelet-moment observables (including phase harmonics and scattering transforms), and deep learning or field level summary statistics of weak lensing maps. We provide recipes both to minimise the impact of source clustering and to incorporate source clustering effects into forward-modelled mock data.Comment: 5 pages, 2 figures, submitted to MNRAS Letter

    Detection of the significant impact of source clustering on higher-order statistics with DES Year 3 weak gravitational lensing data

    Get PDF
    We measure the impact of source galaxy clustering on higher-order summary statistics of weak gravitational lensing data. By comparing simulated data with galaxies that either trace or do not trace the underlying density field, we show this effect can exceed measurement uncertainties for common higher-order statistics for certain analysis choices. We evaluate the impact on different weak lensing observables, finding that third moments and wavelet phase harmonics are more affected than peak count statistics. Using Dark Energy Survey Year 3 data we construct null tests for the source-clustering-free case, finding a p-value of p = 4 × 10−3 (2.6σ) using third-order map moments and p = 3 × 10−11 (6.5σ) using wavelet phase harmonics. The impact of source clustering on cosmological inference can be either be included in the model or minimized through ad-hoc procedures (e.g. scale cuts). We verify that the procedures adopted in existing DES Y3 cosmological analyses were sufficient to render this effect negligible. Failing to account for source clustering can significantly impact cosmological inference from higher-order gravitational lensing statistics, e.g. higher-order N-point functions, wavelet-moment observables, and deep learning or field level summary statistics of weak lensing maps

    Dark Energy Survey Year 3 results: Curved-sky weak lensing mass map reconstruction

    Get PDF
    We present reconstructed convergence maps, mass maps, from the Dark Energy Survey (DES) third year (Y3) weak gravitational lensing data set. The mass maps are weighted projections of the density field (primarily dark matter) in the foreground of the observed galaxies. We use four reconstruction methods, each is a maximum a posteriori estimate with a different model for the prior probability of the map: Kaiser-Squires, null B-mode prior, Gaussian prior, and a sparsity prior. All methods are implemented on the celestial sphere to accommodate the large sky coverage of the DES Y3 data. We compare the methods using realistic \u39bCDM simulations with mock data that are closely matched to the DES Y3 data. We quantify the performance of the methods at the map level and then apply the reconstruction methods to the DES Y3 data, performing tests for systematic error effects. The maps are compared with optical foreground cosmic-web structures and are used to evaluate the lensing signal from cosmic-void profiles. The recovered dark matter map covers the largest sky fraction of any galaxy weak lensing map to date

    The DES view of the Eridanus supervoid and the CMB cold spot

    Get PDF
    The Cold Spot is a puzzling large-scale feature in the Cosmic Microwave Background temperature maps and its origin has been subject to active debate. As an important foreground structure at low redshift, the Eridanus supervoid was recently detected, but it was subsequently determined that, assuming the standard ΛCDM model, only about 10–20 per cent of the observed temperature depression can be accounted for via its Integrated Sachs–Wolfe imprint. However, R ≳ 100 h−1Mpc supervoids elsewhere in the sky have shown ISW imprints AISW ≈ 5.2 ± 1.6 times stronger than expected from ΛCDM (AISW = 1), which warrants further inspection. Using the Year-3 redMaGiC catalogue of luminous red galaxies from the Dark Energy Survey, here we confirm the detection of the Eridanus supervoid as a significant underdensity in the Cold Spot’s direction at z < 0.2. We also show, with S/N ≳ 5 significance, that the Eridanus supervoid appears as the most prominent large-scale underdensity in the dark matter mass maps that we reconstructed from DES Year-3 gravitational lensing data. While we report no significant anomalies, an interesting aspect is that the amplitude of the lensing signal from the Eridanus supervoid at the Cold Spot centre is about 30 per cent lower than expected from similar peaks found in N-body simulations based on the standard ΛCDM model with parameters Ωm = 0.279 and σ8 = 0.82. Overall, our results confirm the causal relation between these individually rare structures in the cosmic web and in the CMB, motivating more detailed future surveys in the Cold Spot region

    Dark energy survey year 3 results: cosmological constraints from the analysis of cosmic shear in harmonic space

    Get PDF
    We present cosmological constraints from the analysis of angular power spectra of cosmic shear maps based on data from the first three years of observations by the Dark Energy Survey (DES Y3). Our measurements are based on the pseudo-Cℓ method and complement the analysis of the two-point correlation functions in real space, as the two estimators are known to compress and select Gaussian information in different ways, due to scale cuts. They may also be differently affected by systematic effects and theoretical uncertainties, making this analysis an important cross-check. Using the same fiducial Lambda cold dark matter model as in the DES Y3 real-space analysis, we find S8≡σ8Ωm/0.3−−−−−−√=0.793+0.038−0.025⁠, which further improves to S8 = 0.784 ± 0.026 when including shear ratios. This result is within expected statistical fluctuations from the real-space constraint, and in agreement with DES Y3 analyses of non-Gaussian statistics, but favours a slightly higher value of S8, which reduces the tension with the Planck 2018 constraints from 2.3σ in the real space analysis to 1.5σ here. We explore less conservative intrinsic alignments models than the one adopted in our fiducial analysis, finding no clear preference for a more complex model. We also include small scales, using an increased Fourier mode cut-off up to kmax=5hMpc−1⁠, which allows to constrain baryonic feedback while leaving cosmological constraints essentially unchanged. Finally, we present an approximate reconstruction of the linear matter power spectrum at present time, found to be about 20 per cent lower than predicted by Planck 2018, as reflected by the lower S8 value
    corecore