365 research outputs found

    Marine fish may be biochemically constrained from inhabiting the deepest ocean depths

    Get PDF
    No fish have been found in the deepest 25% of the ocean (8,400-11,000 m). This apparent absence has been attributed to hydrostatic pressure, although direct evidence is wanting because of the lack of deepest-living species to study. The common osmolyte trimethylamine N-oxide (TMAO) stabilizes proteins against pressure and increases with depth, going from 40 to 261 mmol/kg in teleost fishes from 0 to 4,850 m. TMAO accumulation with depth results in increasing internal osmolality (typically 350 mOsmol/kg in shallow species compared with seawater\u27s 1,100 mOsmol/kg). Preliminary extrapolation of osmolalities of predicted isosmotic state at 8,000-8,500 m may indicate a possible physiological limit, as greater depths would require reversal of osmotic gradients and, thus, osmoregulatory systems. We tested this prediction by capturing five of the second-deepest known fish, the hadal snailfish (Notoliparis kermadecensis; Liparidae), from 7,000 m in the Kermadec Trench. We found theirmuscles to have a TMAOcontent of 386 ± 18 mmol/kg and osmolality of 991 ± 22 mOsmol/kg. These data fit previous extrapolations and, combined with new osmolalities from bathyal and abyssal fishes, predict isosmotic state at 8,200 m. This is previously unidentified evidence that biochemistry could constrain the depth of a large, complex taxonomic group

    Trophic interactions of megafauna in the Mariana and Kermadec trenches inferred from stable isotope analysis

    Get PDF
    Hadal trenches house distinct ecosystems but we know little about their sources of nutrition or trophic structures. We evaluated megafaunal food web structure and nutritional sources in the Kermadec and Mariana trenches using carbon and nitrogen stable isotope analysis (δ15N and δ13C values) of bulk tissues and proteinaceous individual amino acids (AAs). In the Kermadec Trench, bulk δ15N values ranged from 5.8‰ in trench sediment to 17.5‰ in tissues of the supergiant amphipod, Allicela gigantea. δ15N values of detritivores were much higher than those of sediments (by 7.5‰ more). The δ13C values ranged from −21.4‰ in sediments to −17.3‰ in the brittle star, Ophiolimna sp., and did not co-vary with δ15N values. In the Mariana Trench, only bait-attending fauna and surface sediments were available for analysis. Mariana Trench fishes, amphipods, and sediments had slightly lower δ15N values than those from the Kermadec Trench, possibly because the Mariana Trench lies under more oligotrophic surface waters. We found evidence for multiple food inputs to the system in each trench, namely substantially higher δ15N values in detritivores relative to sediment and high variability in δ13C values. Trophic levels determined from isotopic analysis of individual AAs in the Kermadec Trench ranged from three for detritivores to five for fishes. Source AA δ15N values were variable (range of ~7.0‰ in average δ15N source AA values), with much of this variation occurring in small amphipods. For the other fauna sampled, there was a significant increase in δ15N source AA values with increasing collection depth. This increase could reflect larger amounts of highly microbially reworked organic matter with increasing depth or sporadic input from turbidity flows. Although further sampling across a broader faunal diversity will be required to understand these food webs, our results provide new insights into hadal trophic interactions and suggest that trench food webs are very dynamic

    Fishes of the hadal zone including new species, in situ observations and depth records of Liparidae

    Get PDF
    AbstractObservations and records for fish exceeding 6000m deep are few and often spurious. Recent developments in accessing and sampling the hadal zone 6000–11,000m) have led to an acceleration in new findings in the deep subduction trenches, particularly in the Pacific Ocean. This study describes the discovery of two new species of snailfish (Liparidae) from the Mariana Trench; the ‘Mariana snailfish’ (6198–8076m) and the ‘Ethereal snailfish’ (7939–8145m). These new findings represent respectively the deepest known specimen caught with corroborating depth data, and the deepest fish seen alive. Further specimens and observations of the Kermadec Trench snailfish, Notoliparis kermadecensis, are also presented, as well as the first hadal records of Synaphobranchidae and Zoarcidae (6068 and 6145m respectively) and a depth extension for the Macrouridae (maximum depth now 7012m). Details of these new snailfish specimens caught by baited trap and behaviour observations filmed by baited cameras are presented. An updated assessment of fishes from hadal depths is also reported

    Distribution, composition and functions of gelatinous tissues in deep-sea fishes

    Get PDF
    Many deep-sea fishes have a gelatinous layer, or subdermal extracellular matrix, below the skin or around the spine. We document the distribution of gelatinous tissues across fish families (approx. 200 species in ten orders), then review and investigate their composition and function. Gelatinous tissues from nine species were analysed for water content (96.53 ± 1.78% s.d.), ionic composition, osmolality, protein (0.39 ± 0.23%), lipid (0.69 ± 0.56%) and carbohydrate (0.61 ± 0.28%). Results suggest that gelatinous tissues are mostly extracellular fluid, which may allow animals to grow inexpensively. Further, almost all gelatinous tissues floated in cold seawater, thus their lower density than seawater may contribute to buoyancy in some species. We also propose a new hypothesis: gelatinous tissues, which are inexpensive to grow, may sometimes be a method to increase swimming efficiency by fairing the transition from trunk to tail. Such a layer is particularly prominent in hadal snailfishes (Liparidae); therefore, a robotic snailfish model was designed and constructed to analyse the influence of gelatinous tissues on locomotory performance. The model swam faster with a watery layer, representing gelatinous tissue, around the tail than without. Results suggest that the tissues may, in addition to providing buoyancy and low-cost growth, aid deep-sea fish locomotion. © 2017 The Authors

    Multi-scale variations in invertebrate and fish megafauna in the mid-eastern Clarion Clipperton Zone

    Get PDF
    The abyssal seafloor of the Clarion Clipperton Zone (CCZ) in the central Pacific has the largest known deposits of polymetallic nodules and associated benthic faunal communities with high biodiversity. The environmental factors that structure these communities, both at regional and local scales, are not well understood. In this study, seabed image surveys were used to assess distribution patterns in invertebrate and fish megafauna (>1 cm) at multiple scales in relation to key environmental factors: food supply to the seabed varying at the regional scale (hundreds of km), seabed geomorphological variations varying at the broad local scale (tens of km), and seabed nodule cover varying at the fine local scale (tens of meters). We found significant differences in megafaunal density and community composition between all study areas. Variations in faunal density did not appear to match with regional productivity gradients, although faunal density generally decreased with increasing water depth (from E to W). In contrast, geomorphology and particularly nodule cover appeared to exert strong control on local faunal abundance and community composition, but not in species richness. Local variations in faunal density and beta-diversity, particularly those driven by nodule presence (within study areas), were of comparable magnitude to those observed at a regional level (between study areas). However, regional comparisons of megabenthic assemblages showed clear shifts in dominance between taxonomic groups (perceivable even at Phylum levels) across the mid-eastern CCZ seabed, suggesting a higher regional heterogeneity than was previously thought

    Depth as a driver of evolution in the deep sea: Insights from grenadiers (Gadiformes: Macrouridae) of the genus Coryphaenoides

    Get PDF
    Here we consider the role of depth as a driver of evolution in a genus of deep-sea fishes. We provide a phylogeny for the genus Coryphaenoides (Gadiformes: Macrouridae) that represents the breadth of habitat use and distributions for these species. In our consensus phylogeny species found at abyssal depths (> 4000 m) form a well-supported lineage, which interestingly also includes two non-abyssal species, C. striaturus and C. murrayi, diverging from the basal node of that lineage. Biogeographic analyses suggest the genus may have originated in the Southern and Pacific Oceans where contemporary species diversity is highest. The abyssal lineage seems to have arisen secondarily and likely originated in the Southern/Pacific Oceans but diversification of this lineage occurred in the Northern Atlantic Ocean. All abyssal species are found in the North Atlantic with the exception of C. yaquinae in the North Pacific and C. filicauda in the Southern Oceans. Abyssal species tend to have broad depth ranges and wide distributions, indicating that the stability of the deep oceans and the ability to live across wide depths may promote population connectivity and facilitate large ranges. We also confirm that morphologically defined subgenera do not agree with our phylogeny and that the Giant grenadier (formally Albatrossia pectoralis) belongs to Coryphaenoides, indicating that a taxonomic revision of the genus is needed. We discuss the implications of our findings for understanding the radiation and diversification of this genus, and the likely role of adaptation to the abyss

    Lipid, sterols and fatty acid composition of abyssal holothurians and ophiuroids from the North-East Pacific Ocean: Food web implications

    Get PDF
    The lipid, fatty acid (FA), and sterol composition of two ophiuroids and four holothurians from the abyssal eastern North Pacific were analysed to assess their feeding habits and to ascertain their composition for use in a larger study to examine food web dynamics and trophic ecology. Holothurians were rich in phytosterols and algal derived FA such as docosahexaenoic acid and eicosapentaenoic suggesting tight trophic coupling to phytodetritus. Large proportions of stanols were found, probably a result of enteric bacteria but they may come from sterol metabolism in the holothurians themselves. Oneirophanta mutabilis was distinct with much higher levels of stanols and bacterially derived FA suggesting specific selection of bacteria rich detrital particles or the activity of enteric and integumental bacteria. The ophiuroids sterol and FA compositions differed greatly from the holothurians and reflected consumption of animal material in addition to phytodetritus. Large proportions of energy storage lipids suggested a sporadic food supply. Several unusual fatty acids were found in these abyssal echinoderms. Tetracosahexaenoic acid, 24:6ω3, in ophiuroids and 23:1 in holothurians may be good biomarkers for food web studies. We report the first occurrence of αOH 24:1 in holothurians with none detected in ophiuroids. Its function is presently unknown

    Establishing species–habitat associations for 4 eteline snappers with the use of a baited stereo-video camera system

    Get PDF
    With the use of a baited stereo-video camera system, this study semiquantitatively defined the habitat associations of 4 species of Lutjanidae: Opakapaka (Pristipomoides filamentosus), Kalekale (P. sieboldii), Onaga (Etelis coruscans), and Ehu (E. carbunculus). Fish abundance and length data from 6 locations in the main Hawaiian Islands were evaluated for species-specific and size-specific differences between regions and habitat types. Multibeam bathymetry and backscatter were used to classify habitats into 4 types on the basis of substrate (hard or soft) and slope (high or low). Depth was a major influence on bottomfish distributions. Opakapaka occurred at depths shallower than the depths at which other species were observed, and this species showed an ontogenetic shift to deeper water with increasing size. Opakapaka and Ehu had an overall preference for hard substrate with low slope (hard-low), and Onaga was found over both hard-low and hard-high habitats. No significant habitat preferences were recorded for Kalekale. Opakapaka, Kalekale, and Onaga exhibited size-related shifts with habitat type. A move into hard-high environments with increasing size was evident for Opakapaka and Kalekale. Onaga was seen predominantly in hard-low habitats at smaller sizes and in either hard-low or hard-high at larger sizes. These ontogenetic habitat shifts could be driven by reproductive triggers because they roughly coincided with the length at sexual maturity of each species. However, further studies are required to determine causality. No ontogenetic shifts were seen for Ehu, but only a limited number of juveniles were observed. Regional variations in abundance and length were also found and could be related to fishing pressure or large-scale habitat features

    Observations of deep-sea fishes and mobile scavengers from the abyssal DISCOL experimental mining area

    Get PDF
    Industrial interest in deep-sea mineral extraction began decades ago and today it is at an all-time high, accelerated by global demand for metals. Several seafloor ecosystem disturbance experiments were performed beginning in the 1970’s, including the DISturbance and reCOLonization experiment (DISCOL) conducted in the Peru Basin in 1989. A large seafloor disturbance was created by repeatedly plowing the seafloor over an area of ~ 10.8 km2. Though a number of studies in abyssal mining regions have evaluated megafaunal biodiversity and ecosystem responses, few have included quantitative and detailed data on fishes or scavengers despite their ecological importance as top predators. We used towed camera transects and baited camera data to evaluate the fish community at the DISCOL site. The abyssal fish community was relatively diverse with 16 taxa dominated by Ipnops meadi. Fish density was lower in ploughed habitat during the several years following disturbance but thereafter increased over time in part due to changes in regional environmental conditions. 26 years post disturbance there were no differences in overall total fish densities between reference and experimental areas, but the dominant fish, I. meadi, still exhibited much lower densities in ploughed habitat suggesting only partial fish community recovery. The scavenging community was dominated by eelpouts (Pachycara spp), hermit crabs (Probeebei mirabilis) and shrimp. The large contribution of hermit crabs appears unique amongst abyssal scavenger studies worldwide. The abyssal fish community at DISCOL was similar to that in the more northerly Clarion Clipperton Zone, though some species have only been observed at DISCOL thus far. Also, further species level identifications are required to refine this assessment. Additional studies across the polymetallic nodule provinces of the Pacific are required to further evaluate the environmental drivers of fish density and diversity and species biogeographies, which will be important for the development of appropriate management plans aimed at minimizing human impact from deep-sea mining

    Near-island biological hotspots in barren ocean basins

    Get PDF
    Phytoplankton production drives marine ecosystem trophic-structure and global fisheries yields. Phytoplankton biomass is particularly influential near coral reef islands and atolls that span the oligotrophic tropical oceans. The paradoxical enhancement in phytoplankton near an island-reef ecosystem—Island Mass Effect (IME)—was first documented 60 years ago, yet much remains unknown about the prevalence and drivers of this ecologically important phenomenon. Here we provide the first basin-scale investigation of IME. We show that IME is a near-ubiquitous feature among a majority (91%) of coral reef ecosystems surveyed, creating near-island ‘hotspots' of phytoplankton biomass throughout the upper water column. Variations in IME strength are governed by geomorphic type (atoll vs island), bathymetric slope, reef area and local human impacts (for example, human-derived nutrient input). These ocean oases increase nearshore phytoplankton biomass by up to 86% over oceanic conditions, providing basal energetic resources to higher trophic levels that support subsistence-based human populations
    • …
    corecore