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Abstract 19 

Industrial interest in deep-sea mineral extraction began decades ago and today it is at an all-time 20 

high, accelerated by global demand for metals. Several seafloor ecosystem disturbance 21 

experiments were performed beginning in the 1970’s, including the DISturbance and 22 

reCOLonization experiment (DISCOL) conducted in the Peru Basin in 1989.  A large seafloor 23 

disturbance was created by repeatedly plowing the seafloor over an area of ~10.8 km2. Though a 24 

number of studies in abyssal mining regions have evaluated megafaunal biodiversity and 25 

ecosystem responses, few have included quantitative and detailed data on fishes or scavengers 26 

despite their ecological importance as top predators. We used towed camera transects and baited 27 

camera data to evaluate the fish community at the DISCOL site. The abyssal fish community was 28 

relatively diverse with 16 taxa dominated by Ipnops meadi. Fish density was lower in ploughed 29 

habitat during the several years following disturbance but thereafter increased over time in part 30 

due to changes in regional environmental conditions. 26 years post disturbance there were no 31 
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differences in overall total fish densities between reference and experimental areas, but the 32 

dominant fish, I. meadi, still exhibited much lower densities in ploughed habitat suggesting only 33 

partial fish community recovery.  The scavenging community was dominated by eelpouts 34 

(Pachycara spp), hermit crabs (Probeebei mirabilis) and shrimp. The large contribution of 35 

hermit crabs appears unique amongst abyssal scavenger studies worldwide. The abyssal fish 36 

community at DISCOL was similar to that in the more northerly Clarion Clipperton Zone, 37 

though some species have only been observed at DISCOL thus far.  Also, further species level 38 

identifications are required to refine this assessment.  Additional studies across the polymetallic 39 

nodule provinces of the Pacific are required to further evaluate the environmental drivers of fish 40 

density and diversity and species biogeographies, which will be important for the development of 41 

appropriate management plans aimed at minimizing human impact from deep-sea mining.  42 

  43 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-51
Manuscript under review for journal Biogeosciences
Discussion started: 20 February 2019
c© Author(s) 2019. CC BY 4.0 License.



3 
 

1. Introduction 44 

The world’s oceans are becoming increasingly exploited for their resources, and 45 

anthropogenic effects now reach the farthest corners and depths of ocean ecosystems (Ramirez-46 

Llodra et al., 2011). New uses of our oceans are emerging.  Industrial interest in deep-sea 47 

mineral extraction is at an all-time high, accelerated by global demand for minerals such as 48 

cobalt, zinc, copper, nickel, and rare-earth elements, which are enriched in seamount crusts as 49 

well as manganese nodules and deposited at hydrothermal vents. Currently, the International 50 

Seabed Authority has granted 29 exploration contracts to companies to explore for metals and 51 

rare-earth minerals in areas totaling >1,200,000 km2 of seafloor in the Pacific, Atlantic, and 52 

Indian Oceans (www.isa.org.jm).  Though the current intensity of commercial interest combined 53 

with technological innovations will soon lead to exploitation, this idea has a long history. Thus 54 

several seafloor ecosystem disturbance experiments were performed beginning in the 1970’s 55 

(reviewed in Jones et al., 2017).   56 

  One of these, the DISturbance and reCOLonization experiment (DISCOL) was conducted 57 

in the Peru Basin in 1989.  A large experimental seafloor disturbance was created by repeatedly 58 

plowing the seafloor.  Biological surveys were conducted prior to the disturbance and several 59 

times thereafter to monitor seafloor ecosystem recovery (Thiel et al., 2001). Studies of the site 60 

seven years after disturbance showed only partial recovery (Thiel et al., 2001;Bluhm, 2001). 61 

Similar studies carried out in the north Pacific have also given indications that seafloor 62 

communities have not recovered or only partially recovered in periods of 26-37 years following 63 

disturbance (Miljutin et al., 2011;Jones et al., 2017;Gollner et al., 2017).  This is not surprising 64 

given low rates of recruitment and growth common in these ecosystems, and the removal of the 65 

hard substrate upon which a large portion of the fauna depends (Amon et al., 2016;Vanreusel et 66 

al., 2016;Purser et al., 2017).  67 

 Though a number of studies in abyssal mining regions have evaluated megafaunal 68 

biodiversity and ecosystem responses, few have included quantitative and detailed data on fishes 69 

or scavengers (Leitner et al., 2017).  However, many fishes are top predators that can have 70 

important influences on communities and ecosystems (Estes et al., 2011;Drazen and Sutton, 71 

2017). Though fishes are mobile and may not suffer immediate mortality from mining, they will 72 

be affected by the large sediment plumes created (Oebius et al., 2001) and by the loss of foraging 73 

habitat, so they may suffer regionally from local mining activities.  Also, top predators can 74 
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bioaccumulate metals and other contaminants (Chouvelon et al., 2012;Choy et al., 2009;Bonito 75 

et al., 2016) that may be released from the activities of mining. Thus, it is important to 76 

characterize the fish community in regions that will likely experience mining in the near future 77 

and to begin constructing a biogeography, so that scientists and managers can evaluate potential 78 

mining impacts and appropriately locate protected no-mining zones (Wedding et al., 2013).  79 

In 2015 a survey was performed of the DISCOL area using photo and video transecting 80 

techniques in a similar manner to the historical surveys of the area conducted into the late 1990s. 81 

In addition, archived analogue baited camera images collected shortly after the 1989 disturbance 82 

(1989-1992) were digitized and analyzed for fishes and other mobile scavengers, some of which 83 

may avoid transecting vehicles (Trenkel et al., 2004;Colton and Swearer, 2010). Our goal was to 84 

a) describe the fish and scavenger community in detail for the first time, b) evaluate the fish 85 

community response to disturbance and potential recovery, and c) compare the fish and 86 

scavenger community to that observed to the north of the equator in the Clarion Clipperton Zone 87 

(CCZ) where the majority of abyssal mining exploration licenses have been thus far granted, and 88 

where initial pilot mining activities are likely to commence.  89 

 90 

2. Methods 91 

In 1989 a ~10.8 km² circular region of the Peru basin in the Pacific, the DISCOL 92 

experimental area (the DEA), was artificially ploughed, in an effort to simulate the effects of 93 

deep-sea mining (Thiel et al., 2001). The study site (7º 04.4’ S, 88º 27.60’ W) ranges in depth 94 

from 4120-4200 m.  Sediments are fine grained clays overlain with heterogeneous cover of 95 

manganese nodules, sometimes in high density.  The plough-harrow device was 8 m wide and 96 

when deployed, overturned the first 10-15cm of seafloor sediment, ploughing the nodules into 97 

the seafloor and removing this hard substrate from the sediment / water interface. The plough 98 

was towed in 78 radial transects through the disturbance area with ~20% of the seafloor directly 99 

disturbed by the plough. The most central region of the DEA was the most highly disturbed area 100 

crosscut by the majority of plough tows (Fig. 1; Foell et al., 1992). 101 

 In 2015 the DISCOL site was revisited and sampled twice (cruises SO242-1 and 2).  The 102 

initial cruise was conducted in the summer and primarily conducted detailed acoustic and image-103 

based mapping of the plough tracks using Autonomous Underwater Vehicles and ship based 104 

sensors. This initial cruise also towed an epibenthic sled (EBS) several times across the seafloor, 105 
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removing the top 20 cm of seafloor in trenches of ~2m x 500 m. These sled deployments were 106 

conducted to more accurately simulate the upper sediment removal envisioned as a likely 107 

consequence of mining. The second of these cruises focused on the detailed photographic study 108 

of the historic and recent disturbances mapped during the first cruise.  109 

For investigation of megafauna, including fishes, the Alfred Wegner Institute (AWI) 110 

OFOS LAUNCHER towed camera system was used to conduct photographic transects of the 111 

seafloor. The OFOS LAUNCHER is identical to the OFOBS system described in Purser et al. 112 

(2018), with the exceptions that the OFOS was not equipped with INS, side scan or forward 113 

facing sonar systems. OFOS was flown at a height of ~1.7m above the seafloor and used a 23 114 

megapixel downward looking still camera to take images every 15 seconds, each of which also 115 

captured the laser points projected by a tri-laser (50 cm spacing) sizing device. Ship speed was 116 

maintained at 0.2-0.4 knots.  117 

Given the high heterogeneity of the seafloor area studied, each image was manually 118 

assessed to represent one of a range of disturbance categories. These were 1) ‘Reference’ areas, 119 

not directly within the target circle of seafloor ploughed in 1989 (DEA), 2) ‘Undisturbed’ areas 120 

within the central DEA circle, but not actually impacted by the plough harrow directly, 3) 121 

‘Transition’ images, within which both the edge of a plough track was visible as well as 122 

surrounding seafloor, 4) ‘Ploughed’ images within which only ploughed seafloor was visible and 123 

5) ‘EBS’ areas, disturbed a month prior to SO242-2 by the towed epibenthic sled deployed by 124 

SO242-1. These five disturbance categories represent increasing levels of physical disturbance. 125 

Image area captured within each image was determined by measuring the spacing of the 126 

laser points in a subset of 3663 images using the PAPARA(ZZ)I software application (Marcon 127 

and Purser, 2017). The image area of all remaining images was calculated from the camera 128 

altitude (distance to seafloor) using a second order polynomial regression of the laser-based 129 

measurements. The average seafloor image area was 5.71 m2.  In some instances, the camera was 130 

manually triggered to capture images of fishes that would have been missed in between timed 131 

images, or to capture a fish at a more suitable angle for identification.  Images were manually 132 

annotated for fishes (for octopi see Purser et al., (2017) and for all invertebrates and benthic 133 

fauna see Marcon et al. submitted) using a variety of published keys. Fish density was estimated 134 

by dividing the number of fish viewed in regular timed images by the area photographed.  135 

Manually triggered images were not included in density estimates as these would present a 136 
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positive bias towards images with fish in them. Diversity was evaluated using rarefaction curves 137 

(on all images, timed and manually triggered, because this approach only requires positive 138 

occurrences) to enable comparisons between habitat types that were not sampled at the same 139 

intensity.   140 

 OFOS transects often crossed several habitat types, so for fish density estimates, the 141 

images from each transect were divided into habitat type subsets. Fish density was estimated for 142 

each of these by dividing the number of fish viewed in the regularly timed images by the area 143 

photographed. For some habitat categories, there were very few images collected during a 144 

transect. In this case, we eliminated all the subsets/samples that were unlikely to have seen at 145 

least one fish based on the mean density of both large and small samples of 30.6 fish ha-1, 146 

translating to a threshold sample area of 330 m2.  If used in the analysis, these small image sets 147 

would either bias the results towards zero estimates if no fish present in the small image set, or 148 

towards incorrectly high estimates if a few fish happened to be in the small set of collected 149 

images. Fish density was compared between habitat types using a permutational ANOVA on a 150 

Euclidean distance matrix to account for uneven sample sizes and non-normal data distribution.  151 

 Baited cameras are now a widely used tool to census marine fishes (Bailey et al., 2007) 152 

because they can attract often sparsely distributed animals to within the census view, including 153 

some that might avoid active camera survey tools.  Thus, for fully describing diversity and 154 

species abundances within a regional fish assemblage, they are indispensable. However, in 155 

contrast to transect methods, they are more difficult to use for estimations of accurate animal 156 

densities (Priede and Merrett, 1998;Yeh and Drazen, 2011).  157 

 During the first post disturbance cruise in 1989 and three years later in 1992 (Sonne 158 

cruises 61 and 77), free fall baited cameras (freefall baited observing systems - FBOS) were 159 

deployed (Brandt et al., 2004). These utilized a Benthos 35mm survey camera and strobe.  Bait 160 

was attached to a rod or placed in a small clear plastic tube ~1m from the camera, resting on the 161 

seafloor.  Oblique images of ~1.7m2 of the seafloor were taken every 2 to 5.5 min for ~24 to 55 162 

hours, averaging 725 images per deployment. Animals were counted in each image.  Metrics 163 

extracted from the imagery include the maximum number of each taxa visible in any one image 164 

over the camera deployment (MaxN), the time of first arrival for each taxa (Tarr), and the 165 

proportion of images in which a taxa was present for a camera deployment (Yeh and Drazen, 166 

2011;Linley et al., 2017;Leitner et al., 2017).  Only species that were clearly attracted to the bait 167 
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were enumerated.  This eliminated species that were photographed as they were simply drifting 168 

or crawling through the field of view. Further, many small amphipods were often present at the 169 

bait but could not be reliably counted and so are not included. Deployments in 1989 were made 170 

within both the reference and disturbance areas, and an analysis of similarity test (ANOSIM) was 171 

used to compare community compositions. 172 

 173 

3. Results 174 

3.1 Photographic transects 175 

20 OFOS transects samples were performed resulting in 46 habitat samples (Fig. 1). 176 

From these a total of 16733 images were examined with 306 fishes observed in 300 images 177 

(Table 1). Fishes were represented by 14 taxa (not including the category “unidentified fishes”; 178 

Fig. 2). Several groups were distinct but could not be identified to species whereas others were 179 

only identifiable to genus or family. The most common species observed was the benthic Ipnops 180 

cf meadi representing 61% of the fish observations. The Ophidiids were the most speciose family 181 

observed with 6 operational taxonomic units (OTU), some of which were distinct but could not 182 

be identified conclusively.  183 

 Across the five different habitat types, sampling effort was very uneven.  Within the full 184 

data set, images taken of reference area and in unploughed habitat within the experimental area 185 

were most abundant (Table 1).  Seafloor images showing the disturbed habitat types (transient, 186 

ploughed and epibenthic sled (EBS) tracks) were less numerous.  For all the data combined, as 187 

well as for the unploughed habitat type alone, rarefaction curves suggested adequate sampling as 188 

an asymptote was beginning to be reached in both cases (Fig. 3).  However, within the other 189 

habitat types, rarefaction curves suggested more sampling was required to fully capture the fish 190 

diversity.  Thus, the use of estimated species richness was needed for diversity comparisons. 191 

Interestingly, the disturbed habitat types had higher rarified diversity (ES 26) than the reference 192 

area or neighboring unploughed habitat (Fig. 3).  193 

Fish densities were highly variable. Across all sample areas surveyed, seafloor areas 194 

imaged ranged from 355 to 7798 m2 and fish density ranged from 0 to 71.4 fish ha-1.  Across all 195 

samples average fish density was 30.2 ± 18.2 fish ha-1 (Fig. 4).  Across the habitat types, density 196 

did not vary significantly (PERMANOVA, p>0.05). The density of the most common fish, I. 197 

meadi, could also be estimated and ranged from 0 to 68 fish ha-1, averaging 18.4 ± 17.5 fish ha-1 198 
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across all samples (Fig. 4). Its density was significantly lower in the ploughed habitat type 199 

compared to undisturbed and reference habitats.  Only a single I. meadi was found in the EBS 200 

habitat type (Table 1), but this individual did not occur in a habitat sample of sufficient length for 201 

density estimation.  Ipnops meadi density in the two samples available for analysis was zero.  202 

Our fish density estimates can be compared to those published in Bluhm (2001).  203 

Bluhm’s time series of densities suggests that there were no fish observed 6 months post 204 

disturbance, then fish density increased at year 3 and had returned to pre-disturbance density 205 

levels after 7 years (Fig. 5). At this time, ophiuroids, holothurians, fish and hermit crabs were 206 

observed in the plough tracks.  We examined this data and the 2015 data for the reference, 207 

ploughed and unploughed habitat types, in addition to those presented in Bluhm’s original work 208 

using a two factor PERMANOVA. Habitat type and time were significant predictors of fish 209 

density with lower fish densities in the ploughed habitat (p<0.01).  Also, the densities of fish 210 

across the three habitat types changed significantly with time since the disturbance (habitat x 211 

time, p<0.05). Fish density was significantly (p<0.05) lower than the other habitat types right 212 

after the disturbance, at 3 years post disturbance, and marginally lower at 6 months post 213 

disturbance (p=0.057). At 7 years the undisturbed habitat type in the DEA had higher fish 214 

density than the reference area. At 26 years, as already mentioned, there was no difference 215 

between habitats. Fish densities were similar to levels found in the undisturbed habitats and the 216 

reference area at 3 years post disturbance but higher than other times (Fig. 5). It was not possible 217 

to evaluate the times series data for I. meadi as Bluhm (2001) did not publish species specific 218 

results. 219 

   220 

3.2 Baited camera observations 221 

 Six baited camera deployments were conducted, 5 in 1989 and 1 in 1992 (Table 2).  Six 222 

taxa of fishes were identified (Fig. 6).  The most abundant (MaxN) in the deployments was the 223 

eelpout Pachycara nazca.  This species occurred in all 6 deployments, reached a MaxN of 9 in 224 

two of the deployments and on average was present in 55% of the images. Individuals of the 225 

rattail Coryphaenoides sp. were either C. armatus or C. yaquinae, or both were present but, we 226 

could not differentiate them in the photographs.  This taxa was present in all of the deployments 227 

but was observed on average in only 2.1% of images, and MaxN was never more than 2.  Several 228 

ophidiids and a synaphobranchid eel were also observed. 229 
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 The baited camera also attracted 9 taxa of invertebrates (Table 2).  The small shrimp 230 

Hymenopeneus nereus was present in all of the deployments in relatively large numbers (average 231 

MaxN = 9), with up to 15 visible at one time and was present on average in 63% of the images.  232 

The hermit crab Probeebei mirabilis, was also observed in every deployment but in varying 233 

numbers (from 1 to 9) and in 29% of the images.  Penaeid shrimp were also observed in every 234 

deployment and were the third most abundant and common scavenging species. Two species 235 

were identified, Cerataspis monstrosus (identified as Plesiopeneus armatus in earlier papers; 236 

Leitner et al 2017) and Benthiscymus sp.  Frequently, these could not be distinguished as they 237 

differ in the shape of the antennal scale and rostrum which were not always clearly visible.  238 

Large Munnopsid isopods were seen in all but one deployment but did not remain in the field of 239 

view for long. Ophiuroids were not abundant or common, being observed in three deployments 240 

as single individuals, but they stayed in the field of view for a long time (high persistence 241 

values). 242 

 Two of the camera deployments in 1989 were made in the disturbance area 6 months post 243 

event. In one of these deployments there was no obvious sign of disturbance in the limited field 244 

of view. In the other, a plough harrow track was clearly visible (FBOS006; Table 2).  Low 245 

numbers of the benthic eelpout, P. nazca, were observed during this deployment.  This 246 

deployment also had the lowest numbers of the benthic shrimp, H. nereus.  However, the 247 

community composition did not vary significantly between the 1989 deployments in disturbed 248 

and reference areas (ANOSIM, p>0.05).  249 

 Overall, the diversity observed with the small number of camera deployments was fairly 250 

uniform, as evident from the plateau reached in both rarefaction and species accumulation curves 251 

(Fig. 7). This was the case for all scavengers and for the fishes alone. The baited cameras 252 

observed fewer taxa of fishes compared to the photo transects (Table 1, 2). Many of the fishes 253 

observed in the photo transects included less mobile benthic species such as members of the 254 

Ipnopidae, Bathysauridae and numerous unidentified ophidiids. However, the baited camera 255 

deployments identified two fish species that were not observed in the photo transects, Barathrites 256 

iris and a Synaphobranchid eel, both mobile scavengers.  257 

 258 

4. Discussion 259 

4.1 A description of the fish and scavenging community and relationship to past DISCOL studies 260 
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We present some of the first detailed fish assemblage information for the abyssal eastern 261 

Pacific where seafloor mining will likely occur. Earlier studies at the DISCOL site presented 262 

limited fish assemblage results from the first few years of the experiment and report finding 8 263 

fish taxa with Ipnops sp. being the most abundant (Bluhm, 1994).  All of the taxa that were 264 

observed in these initial investigations were also present in our 2015 survey results, with the 265 

exception of Halosaurus sp. Moreover, we observed 6 additional taxa in 2015, and together with 266 

analysis of the 1989-1992 baited camera deployments, we have observed a total of 16 taxa. 267 

Interestingly the earlier camera transect surveys flew the camera system higher off the bottom (3-268 

3.5m vs 1.7m) which is perhaps more appropriate for the survey of larger, mobile fishes. 269 

Advances in photographic identification of abyssal fishes across the Pacific and improvements in 270 

photographic quality have resulted in the greater detail in the present analysis.     271 

The baited camera deployments provided additional information on the DISCOL fish 272 

community and also provided data on scavenging invertebrate fauna.  Past taxonomic works 273 

have used trapped specimens to document the presence of the eelpouts P. nasca and P. bulbiceps 274 

(Anderson and Bluhm, 1997) and the ophidiid B. iris (specimen deposited at the Senckenberg 275 

Museum). The physical specimens provide some vouchers for taxa that were identified from 276 

photographs. Two taxonomic studies used the baited camera imagery to tentatively identify the 277 

ophidiid Bassozetus nasus (Nielsen and Merrett, 2000) and large Munnopsid isopods which were 278 

thought to belong to the genus Paropsurus (Brandt et al., 2004). Bluhm et al (1995) briefly states 279 

that P. mirabilis and ophiuroids were commonly seen in the baited camera photos, but these 280 

results were not given in any detail. We show the eelpouts, the shrimp H. nereus, and hermit 281 

crabs are indeed common and regular bait attending fauna at this site (see below for comparisons 282 

to other abyssal regions). 283 

  284 

4.2 Evaluation of the fish community response to disturbance and potential recovery 285 

 Our results 26 years post disturbance, when compared to earlier sampling, provide some 286 

insight into the recovery potential of the fish fauna.  The striking result found by Bluhm (2001) 287 

was that no fishes were observed in the disturbance area within 6 months of the disturbance; 288 

however, we show the presence of fish and scavenging invertebrates at this time from baited 289 

camera deployments. Samples sizes were low, but the community seems comparable to that in 290 

the reference areas at the same time. It seems likely that the scavengers were attracted from the 291 
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larger neighborhood, some possibly from proximate reference or undisturbed areas.  This could 292 

occur even if these animals were not commonly residing in the disturbance area due to habitat or 293 

prey community alteration.   294 

Only partial recovery of the fish community has occurred 26 years post disturbance. Total 295 

fish density in the ploughed habitat of the DEA increased over time and in relation to the 296 

reference and undisturbed habitat suggesting recovery.  It should be noted that large interannual 297 

changes were evident at the reference site with fish densities peaking 3 years post disturbance 298 

and at high levels again at 26 years (Fig. 5). An increase in megafaunal density over the first 7 299 

years of the experiment was already documented and hypothesized to be the result of increased 300 

phytodetrital food flux and growing populations regionally (Bluhm, 2001). Such variation in 301 

megafaunal abundance is a regular feature of abyssal communities (Kuhnz et al., 2014;Ruhl and 302 

Smith, 2004). Comparisons between habitats at a point in time can provide a more robust means 303 

to assess recovery after plough disturbance (Miljutin et al., 2011).  We found no differences in 304 

total fish density between the disturbed and undisturbed habitats at 26 years.  Further, diversity 305 

(ES 26) was slightly higher in the disturbed habitat areas, although with relatively small sample 306 

sizes. However, the most common fish I. meadi, that makes up more than half of all the fish 307 

observations, had only a third of the density in 26-year-old plough tracks compared to 308 

undisturbed and reference areas, and only one individual was seen in the fresh EBS tracks (Fig. 309 

4). The avoidance of I. meadi over plough tracks, shows that even the mobile fish community 310 

has not fully recovered from the disturbance after more than two decades. This species’ response 311 

likely relates to its biology as a rather sedentary, small benthic fish that, based on limited data, 312 

feeds on polychaetes, small bivalves, and crustaceans (Nielsen, 1966;Crabtree et al., 1991). Its 313 

prey may not have recovered in the tracks (Jones et al., 2017;Borowski, 2001).  Most of the other 314 

fishes observed are benthopelagic and when swimming across a habitat mosaic might as easily 315 

be seen over an old plough track as over other habitat. Even if benthopelagic species tend to 316 

favor undisturbed habitat, this would be difficult to see in the data.  Our other benthic species 317 

include the lizardfish B. mollis which preys on mobile fishes and shrimps and B. sewelli, which 318 

is a larger member of the Ipnopidae, but was too infrequently observed to assess habitat 319 

preferences (Table 1). 320 

Conclusions about fish community recovery over time must be taken with caution. With a 321 

sparsely distributed fauna and the high variability in density, there are limits on statistical power 322 
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and thus our confidence.  The earlier DISCOL surveys differed in methodology to the current 323 

surveys including average altitude of the camera above bottom, image quality, and attention to 324 

the fishes. Our diversity estimates may well be higher as a result.  Density estimates could also 325 

be affected by these same factors. The most common fish in the surveys, I. meadi, is relatively 326 

small and despite reflective eyes (Fig. 2) may have been more visible in our 2015 surveys in 327 

closer proximity to the seafloor. The influence many of these parameters have had on abundance 328 

estimations of fauna in the DISCOL region has been investigated in detail for a region of the 329 

DEA which was surveyed several times during the initial 7-year period and again in 2015. In 330 

2015, the OFOS was deployed at 1.7 and 4 m in this region, and additionally an AUV was flown 331 

at 5 m to image the same region of seafloor. The results from these comparative studies (Purser 332 

et al. submitted for this special issue) show the sensitivity of density and diversity indices in the 333 

DISCOL area to changes in flight height, illumination, and camera type. Larger megafauna, such 334 

as fish, were clearly visible in images collected from higher altitudes, therefore resulting in both 335 

higher diversity and abundance estimates for a given transect length than achieved with lower 336 

flying camera systems. Certainly, methodology plays a very important role in determining the 337 

accuracy of sampling strategies in this ecosystem for determination of these parameters.   338 

Our results add to a growing body of literature that generally finds little or partial 339 

recovery of faunal communities, even decades after simulated mining disturbances. Epifaunal 340 

megafauna density was considerably lower in disturbance tracks made 20 and 37 years prior to 341 

re-survey during the OMCO experiment in the CCZ (Vanreusel et al., 2016). Meta-analyses of 342 

abyssal disturbance experiments in the CCZ suggest that recovery of density and diversity is 343 

faster in mobile than sedentary fauna (Gollner et al., 2017;Jones et al., 2017).  For instance, the 344 

mobile holothurian community appears to have recovered from disturbance in terms of density 345 

and community composition at the DISCOL site after 26 years (Stratmann et al., 2018).  Most 346 

holothurians are detrital deposit feeders and their food source settling from above may not be 347 

greatly affected by the plough disturbance, whereas some fishes, such as I. meadi, likely rely 348 

upon epifaunal and infaunal macrofauna for food.  The meiofauna and macrofauna have not 349 

recovered completely after 26 years in the CCZ (Miljutin et al., 2011), or after 7 years at the 350 

DISCOL site (Borowski, 2001).  Some of the variation in the recovery potential observed 351 

between studies is undoubtedly derived from the variation in disturbance type and intensity.  The 352 

direct benthic scale of actual nodule mining activities is suggested to be from 300-600 km2 y-1 353 
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for a single mining license (Oebius et al., 2001;Levin et al., 2016). Plumes of sediment from 354 

collectors or from discharge of the ore dewatering plume (Rolinski et al., 2001) will greatly 355 

expand this area of effect. Therefore, it seems unlikely that the small-scale disturbance 356 

experiments, such as DISCOL (~10.8 km2), will be adequate for evaluating the potential effects 357 

of full scale nodule mining. Further, the physical disturbance made in all experimental studies to 358 

date have not been directly reminiscent of the impacts actual mining will make in terms of 359 

volumes of surface sediment removed or displaced, subsequent sediment compaction, or 360 

generation of the high resolution topographical changes associated with the ridges and troughs 361 

likely to result from tracked mining vehicle movement (Jones et al., 2017;Doya et al., 2017;Jones 362 

et al., 2018). 363 

 364 

4.3 Comparison of the DISCOL fish and scavenger communities to those within the CCZ 365 

Nodule mining is likely to affect very large areas of the seafloor over decades (Wedding 366 

et al., 2015). Mobile fishes and other scavengers likely have the greatest ability to migrate away 367 

from mining disturbances, but they may be affected regionally through the redistribution of prey 368 

resources and sublethal effects from toxic metals or sediment plumes. Consequently, the 369 

biogeographies of taxa, even mobile species, are an important input to spatial management 370 

approaches (Watling et al., 2013).  The scale of species distributions will help determine where 371 

and how large reserve areas should be in order to protect species. Comparison of the present 372 

findings in the south Pacific to those in the CCZ polymetallic nodule province to the north, 373 

across the equatorial upwelling, provide some insight into the ranges of abyssal fishes and 374 

scavengers in this mining relevant region. Past studies frequently combined fish and scavenger 375 

taxa into larger functional groups such as megafauna (Jones et al., 2017), but some studies have 376 

presented lists of species, which are the focus of the comparison here.  377 

A number of the fish taxa observed with camera transects in the CCZ have also been 378 

identified in the DISCOL area suggesting large species distributions (Table 3). 10 of the 14 taxa 379 

in the DISCOL region are shared with the CCZ. Four taxa were identified from DISCOL that 380 

were not previously identified from the CCZ region, none of which were abundant. Four fishes 381 

were observed in the various CCZ studies but not at the DISCOL site. A number of abyssal 382 

species have pan-Pacific and even global distributions (Priede, 2017). However, we are not 383 

suggesting that there is only a single community of fishes and scavengers integrated over 1000’s 384 
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of kilometers. The overlap between the two areas may be artificially high due to the difficulty in 385 

identifying species from photographs, particularly those taken from high altitudes, and hence the 386 

use of genera and higher taxonomic categories. Further there are some taxa which can easily be 387 

confused depending upon image quality. For instance in the DISCOL site we identified the 388 

ophidiid, Porogadus sp. which has a long whip like tail and narrow body similar to Halosaurs 389 

which have been observed in the CCZ (Amon et al., 2017) and in an earlier study at the DISCOL 390 

site (Bluhm, 1994).  We suspect that with increasing camera resolution and better taxonomic 391 

experience, photographic data and its analysis will improve greatly.  Also, taxa are much more 392 

easily identified in oblique imagery.  For instance, Halosaurs have prominent high pectoral fins 393 

and a single short dorsal whereas Porogadus has a long low dorsal fin all of which are seen in 394 

oblique imagery. We suggest the use of both oblique and vertical cameras on the same platforms 395 

in future studies. There has been some suggestion that oblique imagery would also alleviate 396 

avoidance issues with mobile taxa, but in the one abyssal study that used both oblique and 397 

vertical cameras, greater fish density was found in the vertical imagery (Milligan et al., 2016).  398 

Finally, collecting physical specimens and genetic data would be a great complement to the 399 

camera-based approach. Trawling for fish samples in mining claim areas will be challenging due 400 

to the great depth and the abundance of nodules, which can break nets and greatly damage 401 

specimens. Baited traps are effective for some of the fauna (Leitner et al., 2017;Linley et al., 402 

2016). 403 

 The scavenging communities exhibit some interesting differences to those described from 404 

the eastern CCZ region and other abyssal Pacific locations.  The dominant DISCOL scavengers 405 

were the shrimp H. nereus, eelpouts Pachycara spp., and the hermit crab P. mirabilis. The 406 

presence of large numbers of hermit crabs at the DISCOL site has been noted in earlier transect 407 

studies (Bluhm, 2001), and their large contribution to the scavenging community seems unique 408 

amongst abyssal scavenger studies. The most similar finding was a few hermit crabs 409 

(Sympagurus birkenroadi, MaxN= 2) attending bait from 2000 – 3000m depths off Hawaii (Yeh 410 

and Drazen, 2009).  The large numbers of H. nereus is similar to the community in the eastern 411 

CCZ (Leitner et al., 2017).  However, the eastern CCZ fishes were dominated by 412 

Coryphaenoides spp., which were not abundant at the DISCOL site. Overall the DISCOL 413 

scavenging community appears more similar to that observed in the western CCZ, which hosted 414 

lower numbers of Coryphaenoides spp. and greater numbers of ophidiids and shrimp (Leitner et 415 
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al., 2017). The differences from east to west in the CCZ have been postulated to be related to the 416 

lower surface productivity in the west. Indeed, more oligotrophic regions have been shown to 417 

shift the dominance of the scavenging fishes from Macrourids to Ophidiids (Linley et al., 418 

2017;Fleury and Drazen, 2013).  However, the average long term chlorophyll concentration at 419 

the DISCOL site estimated from the MODIS satellite (30x30km box from 2006-2016) is about 420 

1.5 times higher (0.22 mg chl-a m-3) than that reported by Leitner et al (2017) in the eastern 421 

CCZ. Whether the community differences observed between the DISCOL and CCZ regions are 422 

the result of variations in overlying productivity, species distributions, or other habitat factors 423 

cannot be discerned until a greater number of baited camera studies are conducted across the 424 

region. 425 

 426 

 In conclusion, the DISCOL site has a relatively diverse abyssal fish community 427 

dominated by Ipnops meadi.  Fish density increased in the ploughed habitat type over time and 428 

became similar to undisturbed habitat types at 26 years post disturbance, but the density of I. 429 

meadi is still only a third of the undisturbed habitat types indicating only partial recovery of the 430 

fish fauna. The abyssal fish communities observed in the central eastern Pacific at DISCOL and 431 

the more northerly CCZ are similar with many shared taxa.  However, further species level 432 

identifications are required which requires the collection of physical specimens through trawling 433 

or baited traps.  The scavenging community in the DISCOL site is unique in the prevalence of 434 

the hermit crab, P. mirabilis, which does not appear in the CCZ in either camera transects or 435 

baited camera deployments.  Not surprisingly, fishes and mobile scavengers appear generally to 436 

have large ranges but also large shifts in community composition across the CCZ (Leitner et al., 437 

2017) and across the equator. As commercial mining of polymetallic nodule provinces rapidly 438 

progresses, with commercial field trials commencing in the Belgian and German claim areas of 439 

the CCZ in the first months of 2019, gaining a better understanding of these remote ecosystems 440 

is of paramount importance. Until key fauna, such as the various benthic fish species utilizing 441 

these habitats are better known, ensuring that appropriate management plans are developed to 442 

best minimize human impact during mining will be extremely problematic. 443 

 444 
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Table 1. Numbers of photo transect observations (all images/ timed images only) for fishes in 620 

the DISCOL area by habitat type. The percent of images with fishes are calculated from the 621 

timed images only. 622 

   Habitat type 
OTU Family total reference undisturbed transition ploughed ebs 
Bathysaurus mollis Bathysauridae 13/11 2/1 5/4 2 2 2 
Bathytyphlops cf 
sewelli Ipnopidae 5 

 
3/3 

 
2 

 Ipnops cf meadi Ipnopidae 188/178 68/64 97/91 11 11 1 
Liparidae Liparidae 4/3 1 3/2 

   Coryphaenoides 
armatus/yaquinae Macrouridae 6/5 

 
3/3 3/2 

  Coryphaenoides 
leptolepis? Macrouridae 1/0 

 
1/0 

   Bassozetus cf nasus Ophidiidae 6 2 1 2 1 
 Bassozetus sp. B Ophidiidae 2 

 
1 1 

  Bathyonus caudalis Ophidiidae 30/26 8 15/12 2 3/2 2 
Leucicorus sp. Ophidiidae 3/2 3/2 

    Ophidiid sp. 3 Ophidiidae 6 1 2 1 2 
 Ophidiidae unided Ophidiidae 16/14 2 8/6 1 5 
 Porogadus sp. Ophidiidae 11 4 3 3 1 
 Pachycara spp. Zoarcidae 4/2 2/1 2/1 

   unided fish 
 

11/10 4/3 4 
 

2 1 
#fish 306/281 97/89 148/133 26/25 29/28 6 

# OTUs 14 10 13/12 9 8 3 
# images  16733 5964 7155 1209 2055 350 

# images with fish 300/275 97/89 145/130 23/22 29/28 6 
% images with fish 1.6% 1.5% 1.8% 1.8% 1.4% 1.7% 

 623 
 624 
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Table 3. Fish taxa occurrences from DISCOL and abyssal sites of the CCZ. * listed in Bluhm 626 

(1994), bc – observed by baited camera only, #only these taxa out of 17 are given in the original 627 

reference 628 

Taxa Family 

This 
stud
y 

(Amon et 
al., 
2017;Amo
n et al., 
2016) 

(Pawson 
and 
Foell, 
1983) 

(Radziejewska 
and 
Stoyanova, 
2000) 

(Tilot, 
2006)# 

Bathysaurus mollis Bathysauridae x x x 
 

x 
Halosauridae Halosauridae * x 

   Bathytyphlops sewelli Ipnopidae x 
    Ipnops meadi Ipnopidae x x x x x 

Liparidae Liparidae x 
   

x 
Coryphaenoides 
armatus/yaquinae Macrouridae x x x x x 
Coryphaenoides 
leptolepis? Macrouridae x 

    Barathrites iris Ophidiidae bc bc 
  

x 
Bassozetus sp. Ophidiidae x x x 

  Bassozetus sp. B (sp 4 
in Amon et al 2017) Ophidiidae x x 

   Bathyonus caudalis 
(sp 5 in Amon et al 
2017) Ophidiidae x x 

   Leucicorus sp. Ophidiidae x 
    Ophidiid sp. 1 Ophidiidae 

 
x 

   Ophidiid sp. 2 Ophidiidae 
 

bc 
   Ophidiid sp. 3 Ophidiidae x x  
   Ophidiidae Ophidiidae x 

 
x 

 
x 

Porogadus sp. Ophidiidae x 
    Typhlonus nasus Ophidiidae 

  
x 

 
x 

Histiobranchus 
bathybius Synaphobranchidae 

 
x 

   Synaphobranchidae Synaphobranchidae bc 
   

x 
Pachycara spp. Zoarcidae x x 

   Zoarcidae Zoarcidae 
 

x x 
   629 

  630 
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Figure Captions 631 
 632 

 633 
Figure 1. Map of the DISCOL study site showing the distribution of OFOS camera transects 634 

(colors indicate the 5 habitat types), the OFOS-based fish observations (white circles), and the 635 

location of the baited camera deployments (red squares). The white circular pattern and spokes 636 

shows the location and extent of the DEA. 637 

 638 
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 639 
Figure 2. Representative images of OTUs identified in the DISCOL region during the 2015 640 

survey. A) Bassozetus cf. nasus b) Bathysaurus mollis c) Bathyonus cf. caudalis d) 641 

Bathytyphlops cf. sewelli e) Coryphaenoides armatus/yaquinae f) Coryphaenoides leptolepis g) 642 

a
)

b) c) 

d) 

e) 

f) 

g) h) 

i) 

j) 

k) 

l) 

m) n) 
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Ipnops cf. meadi h) Leucicorus sp. i) Liparidae grey morphotype h) Liparidae bicolor 643 

morphotype k) Bassozetus sp. B l) Ophidiid sp. 3 m) Porogadus sp. n) Pachycara cf. nazca. 644 

  645 
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 646 
Figure 3. Rarefaction curves, estimated species richness as a function of the number of fish 647 

observations, for OFOS transects across habitat types. 648 

 649 

  650 
Figure 4. Total fish (light grey) and I. meadi (dark gray) density (mean and standard deviation) 651 

from the 2015 OFOS transects by habitat type (timed images only) and for the entire dataset.  652 
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The number of separate transects for each habitat type is given under its name.  Letter symbols 653 

for each habitat indicate significant differences in I. meadi density (p<0.05).  654 

 655 

 656 
Figure 5. Fish density (mean and standard deviation) from predisturbance (1989) to 26 years 657 

post disturbance (2015) in the reference area and in the ploughed and unploughed habitats of the 658 

DEA. Data from predisturbance to 7 years post disturbance are from Bluhm (2001). Letter 659 

symbols for each time indicate significant differences between habitat types (p<0.05). At 0.5 yrs 660 

the asterisk indicates a marginal significant difference (p = 0.057). 661 
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Figure 6. Representative images of OTUs identified using baited cameras in the DISCOL 666 

region. A) Illypohis sp. B) Synaphobranchidae C) Pachycara nazca D) Barathrites iris E) 667 

Leucicorus sp. F) Large amphipod likely Eurythenes sp. G) Munnopsidae H) Coryphaenoides sp. 668 

I) Bassozetus c.f. nasus J) Ophiuroidea K) Hymenopeneus nereus L) Octopoda (Vulcanoctopus 669 

sp.) M) Benthiscymus sp. N) Probeebei mirabilis O) Munnidopsis sp P) Cerataspis monstrosus 670 

 671 
 672 
 673 
 674 

 675 
Figure 7.  a) Rarefaction and b) species accumulation curves for baited camera observations. 676 

Solid lines represent all data and dashed lines are fishes only (both based on MaxN data). 677 
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