687 research outputs found

    To What Extent Does Land Use Catchment Lead to the Design of Junction along EDSA?

    No full text
    The coordination of transport and land use have proven to be difficult in the developing world. Three junctions along EDSA (Epifanio de Los Santos Avenue) were analysed and investigated upon how land use affects the behaviour of traffic on a theoretical basis of trip generation. Each junction was modelled on VISSIM, and this paper uses average speed, queue length and average delay as assessment indicators to conduct the comparison. The relationship between the land use pattern and traffic activity was evident in each case study with regard to the occupancy of land. Thus, stronger implementation of policies and better governance is required to alleviate the issues found and raised from each of the case studies and literature

    The Extremes of Thermonuclear Supernovae

    Full text link
    The majority of thermonuclear explosions in the Universe seem to proceed in a rather standardised way, as explosions of carbon-oxygen (CO) white dwarfs in binary systems, leading to 'normal' Type Ia supernovae (SNe Ia). However, over the years a number of objects have been found which deviate from normal SNe Ia in their observational properties, and which require different and not seldom more extreme progenitor systems. While the 'traditional' classes of peculiar SNe Ia - luminous '91T-like' and faint '91bg-like' objects - have been known since the early 1990s, other classes of even more unusual transients have only been established 20 years later, fostered by the advent of new wide-field SN surveys such as the Palomar Transient Factory. These include the faint but slowly declining '02es-like' SNe, 'Ca-rich' transients residing in the luminosity gap between classical novae and supernovae, extremely short-lived, fast-declining transients, and the very luminous so-called 'super-Chandrasekhar' SNe Ia. Not all of them are necessarily thermonuclear explosions, but there are good arguments in favour of a thermonuclear origin for most of them. The aim of this chapter is to provide an overview of the zoo of potentially thermonuclear transients, reviewing their observational characteristics and discussing possible explosion scenarios.Comment: Author version of a chapter for the 'Handbook of Supernovae', edited by A. Alsabti and P. Murdin, Springer. 50 pages, 7 figure

    Hydrogen-poor superluminous stellar explosions

    Full text link
    Supernovae (SNe) are stellar explosions driven by gravitational or thermonuclear energy, observed as electromagnetic radiation emitted over weeks or more. In all known SNe, this radiation comes from internal energy deposited in the outflowing ejecta by either radioactive decay of freshly-synthesized elements (typically 56Ni), stored heat deposited by the explosion shock in the envelope of a supergiant star, or interaction between the SN debris and slowly-moving, hydrogen-rich circumstellar material. Here we report on a new class of luminous SNe whose observed properties cannot be explained by any of these known processes. These include four new SNe we have discovered, and two previously unexplained events (SN 2005ap; SCP 06F6) that we can now identify as members. These SNe are all ~10 times brighter than SNe Ia, do not show any trace of hydrogen, emit significant ultra-violet (UV) flux for extended periods of time, and have late-time decay rates which are inconsistent with radioactivity. Our data require that the observed radiation is emitted by hydrogen-free material distributed over a large radius (~10^15 cm) and expanding at high velocities (>10^4 km s^-1). These long-lived, UV-luminous events can be observed out to redshifts z>4 and offer an excellent opportunity to study star formation in, and the interstellar medium of, primitive distant galaxies.Comment: Accepted to Nature. Press embargoed until 2011 June 8, 18:00 U

    Allergic rhinitis and asthma: inflammation in a one-airway condition

    Get PDF
    BACKGROUND: Allergic rhinitis and asthma are conditions of airway inflammation that often coexist. DISCUSSION: In susceptible individuals, exposure of the nose and lungs to allergen elicits early phase and late phase responses. Contact with antigen by mast cells results in their degranulation, the release of selected mediators, and the subsequent recruitment of other inflammatory cell phenotypes. Additional proinflammatory mediators are released, including histamine, prostaglandins, cysteinyl leukotrienes, proteases, and a variety of cytokines, chemokines, and growth factors. Nasal biopsies in allergic rhinitis demonstrate accumulations of mast cells, eosinophils, and basophils in the epithelium and accumulations of eosinophils in the deeper subepithelium (that is, lamina propria). Examination of bronchial tissue, even in mild asthma, shows lymphocytic inflammation enriched by eosinophils. In severe asthma, the predominant pattern of inflammation changes, with increases in the numbers of neutrophils and, in many, an extension of the changes to involve smaller airways (that is, bronchioli). Structural alterations (that is, remodeling) of bronchi in mild asthma include epithelial fragility and thickening of its reticular basement membrane. With increasing severity of asthma there may be increases in airway smooth muscle mass, vascularity, interstitial collagen, and mucus-secreting glands. Remodeling in the nose is less extensive than that of the lower airways, but the epithelial reticular basement membrane may be slightly but significantly thickened. CONCLUSION: Inflammation is a key feature of both allergic rhinitis and asthma. There are therefore potential benefits for application of anti-inflammatory strategies that target both these anatomic sites

    Using small molecules to facilitate exchange of bicarbonate and chloride anions across liposomal membranes

    No full text
    Bicarbonate is involved in a wide range of biological processes, which include respiration, regulation of intracellular pH and fertilization. In this study we use a combination of NMR spectroscopy and ion-selective electrode techniques to show that the natural product prodigiosin, a tripyrrolic molecule produced by microorganisms such as Streptomyces and Serratia, facilitates chloride/bicarbonate exchange (antiport) across liposomal membranes. Higher concentrations of simple synthetic molecules based on a 4,6-dihydroxyisophthalamide core are also shown to facilitate this antiport process. Although it is well known that proteins regulate Cl-/HCO3- exchange in cells, these results suggest that small molecules may also be able to regulate the concentration of these anions in biological systems

    Parenchymal involvement on CT pulmonary angiography in SARS-CoV-2 Alpha variant infection and correlation of COVID-19 CT severity score with clinical disease severity and short-term prognosis in a UK cohort

    Get PDF
    AIM: To determine if there is a difference in radiological, biochemical, or clinical severity between patients infected with Alpha-variant SARS-CoV-2 compared with those infected with pre-existing strains, and to determine if the computed tomography (CT) severity score (CTSS) for COVID-19 pneumonitis correlates with clinical severity and can prognosticate outcomes. MATERIALS AND METHODS: Blinded CTSS scoring was applied to 137 hospital patients who had undergone both CT pulmonary angiography (CTPA) and whole-genome sequencing of SARS-CoV-2 within 14 days of CTPA between 1/12/20–5/1/21. RESULTS: There was no evidence of a difference in imaging severity on CTPA, viral load, clinical parameters of severity, or outcomes between Alpha and preceding variants. CTSS on CTPA strongly correlates with clinical and biochemical severity at the time of CTPA, and with patient outcomes. Classifying CTSS into a binary value of “high” and “low”, with a cut-off score of 14, patients with a high score have a significantly increased risk of deterioration, as defined by subsequent admission to critical care or death (multivariate hazard ratio [HR] 2.76, p<0.001), and hospital length of stay (17.4 versus 7.9 days, p<0.0001). CONCLUSION: There was no evidence of a difference in radiological severity of Alpha variant infection compared with pre-existing strains. High CTSS applied to CTPA is associated with increased risk of COVID-19 severity and poorer clinical outcomes and may be of use particularly in settings where CT is not performed for diagnosis of COVID-19 but rather is used following clinical deterioration

    A Survey of Honey Bee Colony Losses in the U.S., Fall 2007 to Spring 2008

    Get PDF
    Honey bees are an essential component of modern agriculture. A recently recognized ailment, Colony Collapse Disorder (CCD), devastates colonies, leaving hives with a complete lack of bees, dead or alive. Up to now, estimates of honey bee population decline have not included losses occurring during the wintering period, thus underestimating actual colony mortality. Our survey quantifies the extent of colony losses in the United States over the winter of 2007–2008.Surveys were conducted to quantify and identify management factors (e.g. operation size, hive migration) that contribute to high colony losses in general and CCD symptoms in particular. Over 19% of the country's estimated 2.44 million colonies were surveyed. A total loss of 35.8% of colonies was recorded; an increase of 11.4% compared to last year. Operations that pollinated almonds lost, on average, the same number of colonies as those that did not. The 37.9% of operations that reported having at least some of their colonies die with a complete lack of bees had a total loss of 40.8% of colonies compared to the 17.1% loss reported by beekeepers without this symptom. Large operations were more likely to have this symptom suggesting that a contagious condition may be a causal factor. Sixty percent of all colonies that were reported dead in this survey died without dead bees, and thus possibly suffered from CCD. In PA, losses varied with region, indicating that ambient temperature over winter may be an important factor.Of utmost importance to understanding the recent losses and CCD is keeping track of losses over time and on a large geographic scale. Given that our surveys are representative of the losses across all beekeeping operations, between 0.75 and 1.00 million honey bee colonies are estimated to have died in the United States over the winter of 2007–2008. This article is an extensive survey of U.S. beekeepers across the continent, serving as a reference for comparison with future losses as well as providing guidance to future hypothesis-driven research on the causes of colony mortality

    A gene signature for post-infectious chronic fatigue syndrome

    Get PDF
    Background: At present, there are no clinically reliable disease markers for chronic fatigue syndrome. DNA chip microarray technology provides a method for examining the differential expression of mRNA from a large number of genes. Our hypothesis was that a gene expression signature, generated by microarray assays, could help identify genes which are dysregulated in patients with post-infectious CFS and so help identify biomarkers for the condition. Methods: Human genome-wide Affymetrix GeneChip arrays (39,000 transcripts derived from 33,000 gene sequences) were used to compare the levels of gene expression in the peripheral blood mononuclear cells of male patients with post-infectious chronic fatigue (n = 8) and male healthy control subjects (n = 7). Results: Patients and healthy subjects differed significantly in the level of expression of 366 genes. Analysis of the differentially expressed genes indicated functional implications in immune modulation, oxidative stress and apoptosis. Prototype biomarkers were identified on the basis of differential levels of gene expression and possible biological significance Conclusion: Differential expression of key genes identified in this study offer an insight into the possible mechanism of chronic fatigue following infection. The representative biomarkers identified in this research appear promising as potential biomarkers for diagnosis and treatment

    A Global Characterization and Identification of Multifunctional Enzymes

    Get PDF
    Multi-functional enzymes are enzymes that perform multiple physiological functions. Characterization and identification of multi-functional enzymes are critical for communication and cooperation between different functions and pathways within a complex cellular system or between cells. In present study, we collected literature-reported 6,799 multi-functional enzymes and systematically characterized them in structural, functional, and evolutionary aspects. It was found that four physiochemical properties, that is, charge, polarizability, hydrophobicity, and solvent accessibility, are important for characterization of multi-functional enzymes. Accordingly, a combinational model of support vector machine and random forest model was constructed, based on which 6,956 potential novel multi-functional enzymes were successfully identified from the ENZYME database. Moreover, it was observed that multi-functional enzymes are non-evenly distributed in species, and that Bacteria have relatively more multi-functional enzymes than Archaebacteria and Eukaryota. Comparative analysis indicated that the multi-functional enzymes experienced a fluctuation of gene gain and loss during the evolution from S. cerevisiae to H. sapiens. Further pathway analyses indicated that a majority of multi-functional enzymes were well preserved in catalyzing several essential cellular processes, for example, metabolisms of carbohydrates, nucleotides, and amino acids. What’s more, a database of known multi-functional enzymes and a server for novel multi-functional enzyme prediction were also constructed for free access at http://bioinf.xmu.edu.cn/databases/MFEs/index.htm
    corecore