309 research outputs found

    Comparison of the complete genome sequencesof Bifidobacterium animalis subsp. lactis DSM 10140 and Bl-04

    Get PDF
    Bifidobacteria are important members of the human gut flora, especially in infants. Comparative genomic analysis of two Bifidobacterium animalis subsp. lactis strains revealed evolution by internal deletion of consecutive spacer-repeat units within a novel clustered regularly interspaced short palindromic repeat locus, which represented the largest differential content between the two genomes. Additionally, 47 single nucleotide polymorphisms were identified, consisting primarily of nonsynonymous mutations, indicating positive selection and/or recent divergence. A particular nonsynonymous mutation in a putative glucose transporter was linked to a negative phenotypic effect on the ability of the variant to catabolize glucose, consistent with a modification in the predicted protein transmembrane topology. Comparative genome sequence analysis of three Bifidobacterium species provided a core genome set of 1,117 orthologs complemented by a pan-genome of 2,445 genes. The genome sequences of the intestinal bacterium B. animalis subsp. lactis provide insights into rapid genome evolution and the genetic basis for adaptation to the human gut environment, notably with regard to catabolism of dietary carbohydrates, resistance to bile and acid, and interaction with the intestinal epithelium. The high degree of genome conservation observed between the two strains in terms of size, organization, and sequence is indicative of a genomically monomorphic subspecies and explains the inability to differentiate the strains by standard techniques such as pulsed-field gel electrophoresis

    Recent results from the MAXIMA experiment

    No full text
    MAXIMA is a balloon-borne platform for measuring the anisotropy of the Cosmic Microwave Background (CMB). It has measured the CMB power spectrum with a ten-arcminute FWHM beam, corresponding to a detection of the power spectrum out to spherical harmonic multipole l~1000. The spectrum is consistent with a flat Universe with a nearly scale-invariant initial spectrum of adiabatic density fluctuations. Moreover, the MAXIMA data are free from any notable non-Gaussian contamination and from foreground dust emission. In the same region, the WMAP experiment observes the same structure as that observed by MAXIMA, as evinced by analysis of both maps and power spectra. The next step in the evolution of the MAXIMA program is MAXIPOL, which will observe the polarization of the CMB with comparable resolution and high sensitivity over a small patch of the sky.Comment: To appear in New Astronomy Reviews, Proceedings of the CMBNET Meeting, 20-21 February, 2003, Oxford, U

    Monitoring of heart failure: comparison of left atrial pressure with intrathoracic impedance and natriuretic peptide measurements in an experimental model of ovine heart failure

    Get PDF
    Monitoring of HF (heart failure) with intracardiac pressure, intrathoracic impedance and/or natriuretic peptide levels has been advocated. We aimed to investigate possible differences in the response patterns of each of these monitoring modalities during HF decompensation that may have an impact on the potential for early therapeutic intervention. Six sheep were implanted with a LAP (left atrial pressure) sensor and a CRT-D (cardiac resynchronization therapy defibrillator) capable of monitoring impedance along six lead configuration vectors. An estimate of ALAP (LAP from admittance) was determined by linear regression. HF was induced by rapid ventricular pacing at 180 and 220 bpm (beats/min) for a week each, followed by a third week with daily pacing suspensions for increasing durations (1–5 h). Incremental pacing induced progressively severe HF reflected in increases in LAP (5.9 ± 0.4 to 24.5 ± 1.6 mmHg) and plasma atrial (20 ± 3 to 197 ± 36 pmol/l) and B-type natriuretic peptide (3.7 ± 0.7 to 32.7 ± 5.4 pmol/l) (all P<0.001) levels. All impedance vectors decreased in proportion to HF severity (all P<0.001), with the LVring (left ventricular)-case vector correlating best with LAP (r2=0.63, P<0.001). Natriuretic peptides closely paralleled rapid acute changes in LAP during alterations in pacing (P<0.001), whereas impedance changes were delayed relative to LAP. ALAP exhibited good agreement with LAP. In summary, impedance measured with an LV lead correlates significantly with changes in LAP, but exhibits a delayed response to acute alterations. Natriuretic peptides respond rapidly to acute LAP changes. Direct LAP, impedance and natriuretic peptide measurements all show promise as early indicators of worsening HF. ALAP provides an estimate of LAP that may be clinically useful

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    Analysis of Systematic Effects and Statistical Uncertainties in Angular Clustering of Galaxies from Early SDSS Data

    Full text link
    The angular distribution of galaxies encodes a wealth of information about large scale structure. Ultimately, the Sloan Digital Sky Survey (SDSS) will record the angular positions of order 10^8 galaxies in five bands, adding significantly to the cosmological constraints. This is the first in a series of papers analyzing a rectangular stripe 2.5x90 degrees from early SDSS data. We present the angular correlation function for galaxies in four separate magnitude bins on angular scales ranging from 0.003 degrees to 15 degrees. Much of the focus of this paper is on potential systematic effects. We show that the final galaxy catalog -- with the mask accounting for regions of poor seeing, reddening, bright stars, etc. -- is free from external and internal systematic effects for galaxies brighter than r* = 22. Our estimator of the angular correlation function includes the effects of the integral constraint and the mask. The full covariance matrix of errors in these estimates is derived using mock catalogs with further estimates using a number of other methods.Comment: 64 pages, 31 figures, new version to match that accepted by Ap

    Crop Updates 2005 - Cereals

    Get PDF
    This session covers thirty six papers from different authors: WHEAT AGRONOMY 1. Optimum sowing time of new wheat varieties in Western Australia, Darshan Sharma, Brenda Shackley, Mohammad Amjad, Christine M. Zaicou-Kunesch and Wal Anderson, Department of Agriculture 2. Wheat varieties updated in ‘Flowering Calculator’: A model predicting flowering time, B. Shackley, D. Tennant, D. Sharma and C.M. Zaicou-Kunesch, Department of Agriculture 3. Plant populations for wheat varieties, Christine M. Zaicou-Kunesch, Wal Anderson, Darshan Sharma, Brenda Shackley and Mohammad Amjad, Department of Agriculture 4. New wheat cultivars response to fertiliser nitrogen in four major agricultural regions of Western Australia, Mohammad Amjad, Wal Anderson, Brenda Shackley, Darshan Sharma and Christine Zaicou-Kunesch, Department of Agriculture 5. Agronomic package for EGA Eagle Rock, Steve Penny, Department of Agriculture 6. Field evaluation of eastern and western wheats in large-scale farmer’s trials, Mohammad Amjad, Ben Curtis and Veronika Reck, Department of Agriculture 7. New wheat varieties for a changing environment, Richard Richards, CSIRO Plant Industry; Canberra 8. Farmers can profitably minimise exposure to frost! Garren Knell, Steve Curtin and David Sermon, ConsultAg 9. National Variety Trials, Alan Bedggood, Australian Crops Accreditation System; Horsham 10. Preharvest-sprouting tolerance of wheat in the field, T.B. Biddulph1, T.L. Setter2, J.A. Plummer1 and D.J. Mares3; 1Plant Biology; FNAS, University of Western Australia; 2Department of Agriculture, 3School of Agriculture and Wine, University of Adelaide 11. Waterlogging induces high concentration of Mn and Al in wheat genotypes in acidic soils, H. Khabaz-Saberi, T. Setter, I. Waters and G. McDonald, Department of Agriculture 12. Agronomic responses of new wheat varieties in the Northern Agricultural Region, Christine M. Zaicou-Kunesch and Wal Anderson, Department of Agriculture 13. Agronomic responses of new wheat varieties in the Central Agricultural Region of WA, Darshan Sharma, Steve Penny and Wal Anderson, Department of Agriculture 14. EGA Eagle Rock tolerance to metribuzin and its mixtures, Harmohinder Dhammu, David Nicholson and Chris Roberts, Department of Agriculture 15. Herbicide tolerance of new bread wheats, Harmohinder Dhammu1 and David Nicholson2, Department of Agriculture NUTRITION 16. The impact of fertiliser placement, timing and rates on nitrogen-use efficiency, Stephen Loss, CSBP Ltd 17. Cereals deficient in potassium are most susceptible to some leaf diseases, Ross Brennan and Kith Jayasena, Department of Agriculture 18. Responses of cereal yields to potassium fertiliser type, placement and timing, Eddy Pol, CSBP Limited 19. Sulphate of Potash, the potash of choice at seeding, Simon Teakle, United Farmers Co-operative 20. Essential disease management for successful barley production, K. Jayasena, R. Loughman, C. Beard, B. Paynter, K. Tanaka, G. Poulish and A. Smith, Department of Agriculture 21. Genotypic differences in potassium efficiency of wheat, Paul Damon and Zed Rengel, Faculty of Natural and Agricultural Sciences, University of Western Australia 22. Genotypic differences in potassium efficiency of barley, Paul Damon and Zed Rengel, Faculty of Natural and Agricultural Sciences, University of Western Australia 23. Investigating timing of nitrogen application in wheat, Darshan Sharma and Lionel Martin, Department of Agriculture, and Muresk Institute of Agriculture, Curtin University of Technology 24. Nutrient timing requirements for increased crop yields in the high rainfall cropping zone, Narelle Hill, Ron McTaggart, Dr Wal Anderson and Ray Tugwell, Department of Agriculture DISEASES 25. Integrate strategies to manage stripe rust risk, Geoff Thomas, Robert Loughman, Ciara Beard, Kith Jayasena and Manisha Shankar, Department of Agriculture 26. Effect of primary inoculum level of stripe rust on variety response in wheat, Manisha Shankar, John Majewski and Robert Loughman, Department of Agriculture 27. Disease resistance update for wheat varieties in WA, M. Shankar, J.M. Majewski, D. Foster, H. Golzar, J. Piotrowski and R. Loughman, Department of Agriculture 28. Big droplets for wheat fungicides, Rob Grima, Agronomist, Elders 29. On farm research to investigate fungicide applications to minimise leaf disease impacts in wheat, Jeff Russell and Angie Roe, Department of Agriculture, and Farm Focus Consultants PESTS 30. Rotations for nematode management, Vivien A. Vanstone, Sean J. Kelly, Helen F. Hunter and Mena C. Gilchrist, Department of Agriculture 31. Investigation into the adaqyacy of sealed farm silos in Western Australia to control phosphine-resistant Rhyzopertha dominica, C.R. Newman, Department of Agriculture 32.Insect contamination of cereal grain at harvest, Svetlana Micic and Phil Michael, Department of Agriculture 33. Phosure – Extending the life of phosphine, Gabrielle Coupland and Ern Kostas, Co-operative Bulk Handling SOIL 34. Optimum combinations of ripping depth and tine spacing for increasing wheat yield, Mohammed Hamza and Wal Anderson, Department of Agriculture 35. Hardpan penetration ability of wheat roots, Tina Botwright Acuña and Len Wade, School of Plant Biology, University of Western Australia MARKETS 36. Latin America: An emerging agricultural powerhouse, Ingrid Richardson, Food and Agribusiness Research, Rabobank; Sydne

    Distribution and Habitat Associations of Billfish and Swordfish Larvae across Mesoscale Features in the Gulf of Mexico

    Get PDF
    Ichthyoplankton surveys were conducted in surface waters of the northern Gulf of Mexico (NGoM) over a three-year period (2006–2008) to determine the relative value of this region as early life habitat of sailfish (Istiophorus platypterus), blue marlin (Makaira nigricans), white marlin (Kajikia albida), and swordfish (Xiphias gladius). Sailfish were the dominant billfish collected in summer surveys, and larvae were present at 37.5% of the stations sampled. Blue marlin and white marlin larvae were present at 25.0% and 4.6% of the stations sampled, respectively, while swordfish occurred at 17.2% of the stations. Areas of peak production were detected and maximum density estimates for sailfish (22.09 larvae 1000 m−2) were significantly higher than the three other species: blue marlin (9.62 larvae 1000 m−2), white marlin (5.44 larvae 1000 m−2), and swordfish (4.67 larvae 1000 m−2). The distribution and abundance of billfish and swordfish larvae varied spatially and temporally, and several environmental variables (sea surface temperature, salinity, sea surface height, distance to the Loop Current, current velocity, water depth, and Sargassum biomass) were deemed to be influential variables in generalized additive models (GAMs). Mesoscale features in the NGoM affected the distribution and abundance of billfish and swordfish larvae, with densities typically higher in frontal zones or areas proximal to the Loop Current. Habitat suitability of all four species was strongly linked to physicochemical attributes of the water masses they inhabited, and observed abundance was higher in slope waters with lower sea surface temperature and higher salinity. Our results highlight the value of the NGoM as early life habitat of billfishes and swordfish, and represent valuable baseline data for evaluating anthropogenic effects (i.e., Deepwater Horizon oil spill) on the Atlantic billfish and swordfish populations

    The Atacama Cosmology Telescope: Detection of Sunyaev-Zel'dovich Decrement in Groups and Clusters Associated with Luminous Red Galaxies

    Full text link
    We present a detection of the Sunyaev-Zel'dovich (SZ) decrement associated with the Luminous Red Galaxy (LRG) sample of the Sloan Digital Sky Survey. The SZ data come from 148 GHz maps of the equatorial region made by the Atacama Cosmology Telescope (ACT). The LRG sample is divided by luminosity into four bins, and estimates for the central Sunyaev-Zel'dovich temperature decrement are calculated through a stacking process. We detect and account for a bias of the SZ signal due to weak radio sources. We use numerical simulations to relate the observed decrement to Y200 and clustering properties to relate the galaxy luminosity bins to mass. We also use a relation between brightest cluster galaxy luminosity and cluster mass based on stacked gravitational lensing measurements to estimate the characteristic halo masses. The masses are found to be around 1e14 M_sun.Comment: Accepted in ApJ. 14 pages, 6 figure

    The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report

    Get PDF
    The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument
    corecore