85 research outputs found

    Comparison of self-reported and accelerometer-assessed measurements of physical activity according to socio-demographic characteristics in Korean adults

    Get PDF
    OBJECTIVES Previous studies have shown relatively low correlations between self-reported and accelerometer-assessed physical activity (PA). However, this association differs by socio-demographic factors, and this relationship has not been fully investigated in the general population. Thus, we investigated the correlation between self-reported and accelerometer-assessed PA and whether it differed by demographic and socioeconomic factors among the Korean general population. METHODS This cross-sectional study included 623 participants (203 men and 420 women) aged 30 to 64 years, who completed a PA questionnaire and wore a wrist-worn accelerometer on the non-dominant wrist for 7 days. We examined the agreement for metabolic equivalent task minutes per week (MET-min/wk) between the 2 measures and calculated Spearman correlation coefficients according to demographic and socioeconomic factors. RESULTS The kappa coefficient between tertiles of self-reported and accelerometer-assessed total MET-min/wk was 0.16 in the total population, suggesting overall poor agreement. The correlation coefficient between the 2 measurements was 0.26 (p<0.001) in the total population, and the correlation tended to decrease with increasing age (p for trend <0.001) and depression scores (p for trend <0.001). CONCLUSIONS We found a low correlation between self-reported and accelerometer-assessed PA among healthy Korean adults, and the correlation decreased with age and depression score. When studying PA using accelerometers and/or questionnaires, age and depression need to be considered, as should differences between self-reported and accelerometer-assessed PA

    In Vivo Deficiency of Both C/EBPβ and C/EBPε Results in Highly Defective Myeloid Differentiation and Lack of Cytokine Response

    Get PDF
    The CCAAT/enhancer binding proteins (C/EBPs) are transcription factors involved in hematopoietic cell development and induction of several inflammatory mediators. Here, we generated C/EBPβ and C/EBPε double-knockout (bbee) mice and compared their phenotypes to those of single deficient (bbEE and BBee) and wild-type (BBEE) mice. The bbee mice were highly susceptible to fatal infections and died within 2–3 months. Morphologically, their neutrophils were blocked at the myelocytes/metamyelocytes stage, and clonogenic assays of bone marrow cells indicated a significant decrease in the number of myeloid colonies of the bbee mice. In addition, the proportion of hematopoietic progenitor cells [Lin(−)Sca1(+)c-Kit(+)] in the bone marrow of the bbee mice was significantly increased, reflecting the defective differentiation of the myeloid compartment. Furthermore, microarray expression analysis of LPS- and IFNγ-activated bone marrow-derived macrophages from bbee compared to single knockout mice revealed decreased expression of essential immune response-related genes and networks, including some direct C/EBP-targets such as Marco and Clec4e. Overall, the phenotype of the bbee mice is distinct from either the bbEE or BBee mice, demonstrating that both transcription factors are crucial for the maturation of neutrophils and macrophages, as well as the innate immune system, and can at least in part compensate for each other in the single knockout mice

    Potential prognostic value of heat-shock protein 90 in the presence of phosphatidylinositol-3-kinase overexpression or loss of PTEN, in invasive breast cancers

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Abstract Introduction Evaluating the expression of signaling molecule proteins from the mitogen-activated protein kinase (MAPK) pathway and the phosphatidylinositol-3-kinase (PI3K) pathway in invasive breast cancers may identify prognostic marker(s) associated with early relapse. Methods Immunohistochemical analyses of phosphatase and tensin homologue deleted on chromosome 10 (PTEN), PI3K-p110α, phospho-AKT, phospho-p70S6 kinase, phospho-S6 ribosomal protein, phospho-RAF, phospho-p44/42 MAPK, and heat-shock protein 90 (HSP90) were performed on tumor samples from 212 patients with invasive breast cancer. Statistically significant relations between protein expression, clinicopathologic factors, and relapse-free survival (RFS) were analyzed. Results Expression of HSP90 was associated with 5-year RFS, as well as T stage, N stage, histologic grade, estrogen receptor (ER) expression, human epidermal growth factor receptor 2 (HER2) expression, and the Ki-67 proliferation index. On multivariate analysis, coexpression of HSP90 and PI3K-p110α or expression of HSP90 along with PTEN loss demonstrated significantly worse RFS. In subgroup analyses, both exhibited strong prognostic significance in HER2-positive cases, but not in HER2-negative cases. Conclusions The coexpression of HSP90 with PI3K-p110α or expression of HSP90 along with PTEN loss has a potential as a molecular prognostic marker to predict early relapse in patients with invasive breast cancers

    Physical activity and the risk of SARS-CoV-2 infection, severe COVID-19 illness and COVID-19 related mortality in South Korea: a nationwide cohort study.

    Get PDF
    PURPOSE: To determine the potential associations between physical activity and risk of SARS-CoV-2 infection, severe illness from COVID-19 and COVID-19 related death using a nationwide cohort from South Korea. METHODS: Data regarding 212 768 Korean adults (age ≥20 years), who tested for SARS-CoV-2, from 1 January 2020 to 30 May 2020, were obtained from the National Health Insurance Service of South Korea and further linked with the national general health examination from 1 January 2018 to 31 December 2019 to assess physical activity levels. SARS-CoV-2 positivity, severe COVID-19 illness and COVID-19 related death were the main outcomes. The observation period was between 1 January 2020 and 31 July 2020. RESULTS: Out of 76 395 participants who completed the general health examination and were tested for SARS-CoV-2, 2295 (3.0%) were positive for SARS-CoV-2, 446 (0.58%) had severe illness from COVID-19 and 45 (0.059%) died from COVID-19. Adults who engaged in both aerobic and muscle strengthening activities according to the 2018 physical activity guidelines had a lower risk of SARS-CoV-2 infection (2.6% vs 3.1%; adjusted relative risk (aRR), 0.85; 95% CI 0.72 to 0.96), severe COVID-19 illness (0.35% vs 0.66%; aRR 0.42; 95% CI 0.19 to 0.91) and COVID-19 related death (0.02% vs 0.08%; aRR 0.24; 95% CI 0.05 to 0.99) than those who engaged in insufficient aerobic and muscle strengthening activities. Furthermore, the recommended range of metabolic equivalent task (MET; 500-1000 MET min/week) was associated with the maximum beneficial effect size for reduced risk of SARS-CoV-2 infection (aRR 0.78; 95% CI 0.66 to 0.92), severe COVID-19 illness (aRR 0.62; 95% CI 0.43 to 0.90) and COVID-19 related death (aRR 0.17; 95% CI 0.07 to 0.98). Similar patterns of association were observed in different sensitivity analyses. CONCLUSION: Adults who engaged in the recommended levels of physical activity were associated with a decreased likelihood of SARS-CoV-2 infection, severe COVID-19 illness and COVID-19 related death. Our findings suggest that engaging in physical activity has substantial public health value and demonstrates potential benefits to combat COVID-19

    Identifying novel genetic variants for brain amyloid deposition: a genome-wide association study in the Korean population

    Get PDF
    Background: Genome-wide association studies (GWAS) have identified a number of genetic variants for Alzheimer's disease (AD). However, most GWAS were conducted in individuals of European ancestry, and non-European populations are still underrepresented in genetic discovery efforts. Here, we performed GWAS to identify single nucleotide polymorphisms (SNPs) associated with amyloid β (Aβ) positivity using a large sample of Korean population. Methods: One thousand four hundred seventy-four participants of Korean ancestry were recruited from multicenters in South Korea. Discovery dataset consisted of 1190 participants (383 with cognitively unimpaired [CU], 330 with amnestic mild cognitive impairment [aMCI], and 477 with AD dementia [ADD]) and replication dataset consisted of 284 participants (46 with CU, 167 with aMCI, and 71 with ADD). GWAS was conducted to identify SNPs associated with Aβ positivity (measured by amyloid positron emission tomography). Aβ prediction models were developed using the identified SNPs. Furthermore, bioinformatics analysis was conducted for the identified SNPs. Results: In addition to APOE, we identified nine SNPs on chromosome 7, which were associated with a decreased risk of Aβ positivity at a genome-wide suggestive level. Of these nine SNPs, four novel SNPs (rs73375428, rs2903923, rs3828947, and rs11983537) were associated with a decreased risk of Aβ positivity (p < 0.05) in the replication dataset. In a meta-analysis, two SNPs (rs7337542 and rs2903923) reached a genome-wide significant level (p < 5.0 × 10-8). Prediction performance for Aβ positivity increased when rs73375428 were incorporated (area under curve = 0.75; 95% CI = 0.74-0.76) in addition to clinical factors and APOE genotype. Cis-eQTL analysis demonstrated that the rs73375428 was associated with decreased expression levels of FGL2 in the brain. Conclusion: The novel genetic variants associated with FGL2 decreased risk of Aβ positivity in the Korean population. This finding may provide a candidate therapeutic target for AD, highlighting the importance of genetic studies in diverse populations

    NOVEL LONG NON-CODING RNA MIR205HG: AN ESOPHAGEAL TUMOR-SUPPRESSIVE HEDGEHOG INHIBITOR

    Get PDF
    Esophageal adenocarcinoma (EAC) is one of the most rapidly increasing cancers in Western countries, but its underlying molecular mechanisms have not yet been fully elucidated. Recently, the discovery of long non-coding RNAs (lncRNAs) has added a new layer of complexity to the molecular architecture, identifying these molecules as emerging key regulators of diverse biological pathways. Increasing evidence shows that lncRNA dysregulation can lead to many diseases, including cancer, but their potential involvement in EAC is not yet well-understood. In this study, we used massively parallel RNA sequencing to identify a set of lncRNAs that were differentially expressed in esophageal cancers vs. normal esophageal epithelia. After a rigorous filtering procedure, miR205HG was found to be strikingly downregulated in EAC cell lines and tissues. In vitro assays in EAC cell lines demonstrated that overexpression of miR205HG inhibited cell proliferation, cell cycle progression, and colony formation. Moreover, in vivo mouse xenograft experiments using miR205HG-stably transfected EAC cells revealed that forced miR205HG overexpression inhibited tumor growth in nude mice. We then posited that miR205HG’s mechanism of action involved the Hedgehog (HH) signaling pathway, since miR205HG and SHH expression levels were found to inversely correlate in patient EAC (r= -0.73) and BE (r= -0.83) tissues. Furthermore, miR205HG overexpression was shown to inhibit sonic hedgehog (SHH) transcription and translation. In summary, our findings suggested that miR205HG is involved in the development and/or progression of EAC and offers potential as a therapeutic target and a prognostic biomarker
    corecore