300 research outputs found

    Geometry monoid of the left distributivity and the left idempotency

    No full text
    We construct here the geometry monoids of LDI (left distributive idempotent) and of LDLI (left distributive left idempotent) identities. We study their properties and construct a monoid with solvable word problem based on relations of the geometry monoid of LDLI

    The Ets dominant repressor En/Erm enhances intestinal epithelial tumorigenesis in ApcMin mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ets transcription factors have been widely implicated in the control of tumorigenesis, with most studies suggesting tumor-promoting roles. However, few studies have examined Ets tumorigenesis-modifying functions <it>in vivo </it>using model genetic systems.</p> <p>Methods</p> <p>Using mice expressing a previously characterized Ets dominant repressor transgene in the intestinal epithelium (Villin-En/Erm), we examined the consequences of blocking endogenous Ets-mediated transcriptional activation on tumorigenesis in the Apc<sup>Min </sup>model of intestinal carcinoma.</p> <p>Results</p> <p>En/Erm expression in the intestine, at levels not associated with overt crypt-villus dysmorphogenesis, results in a marked increase in tumor number in Apc<sup>Min </sup>animals. Moreover, when examined histologically, tumors from En/Erm-expressing animals show a trend toward greater stromal invasiveness. Detailed analysis of crypt-villus homeostasis in these En/Erm transgenic animals suggests increased epithelial turnover as one possible mechanism for the enhanced tumorigenesis.</p> <p>Conclusion</p> <p>Our findings provide <it>in vivo </it>evidence for a tumor-restricting function of endogenous Ets factors in the intestinal epithelium.</p

    Analysis and Experimental Evaluation of Power Line Transmission Parameters for Power Line Communication

    Get PDF
    The article describes a way of evaluating the power line channel frequency response and input impedance by means of the linear time-invariant (LTI) power line generator. Two possible methods are introduced for the calculation of primary parameters: the first method depends on the physical realization and physical dimension of the cable, and the second method is derived from the data provided by typical electrical cable manufacturers. Based on these methods, a comparison of transfer functions was made. This is followed by measurement evaluation and numerical verification on a simple topology

    A eta-alpha and A eta-beta peptides impair LTP ex vivo within the low nanomolar range and impact neuronal activity in vivo

    Get PDF
    Background: Amyloid precursor protein (APP) processing is central to Alzheimer’s disease (AD) etiology. As early cognitive alterations in AD are strongly correlated to abnormal information processing due to increasing synaptic impairment, it is crucial to characterize how peptides generated through APP cleavage modulate synapse function. We previously described a novel APP processing pathway producing η-secretase-derived peptides (Aη) and revealed that Aη–α, the longest form of Aη produced by η-secretase and α-secretase cleavage, impaired hippocampal long-term potentiation (LTP) ex vivo and neuronal activity in vivo. Methods: With the intention of going beyond this initial observation, we performed a comprehensive analysis to further characterize the effects of both Aη-α and the shorter Aη-β peptide on hippocampus function using ex vivo field electrophysiology, in vivo multiphoton calcium imaging, and in vivo electrophysiology. Results: We demonstrate that both synthetic peptides acutely impair LTP at low nanomolar concentrations ex vivo and reveal the N-terminus to be a primary site of activity. We further show that Aη-β, like Aη–α, inhibits neuronal activity in vivo and provide confirmation of LTP impairment by Aη–α in vivo. Conclusions: These results provide novel insights into the functional role of the recently discovered η-secretase-derived products and suggest that Aη peptides represent important, pathophysiologically relevant, modulators of hippocampal network activity, with profound implications for APP-targeting therapeutic strategies in AD

    The subduction structure of the Northern Apennines: results from the RETREAT seismic deployment

    Get PDF
    The project Retreating-trench, extension, and accretion tectonics, RETREAT, is a multidisciplinary study of the Northern Apennines (earth.geology.yale.edu/RETREAT/), funded by the United States National Science Foundation (NSF) in collaboration with the Italian Istituto Nazionale di Geofisica e Vulcanologia (INGV) and the Grant Agency of the Czech Academy of Sciences (GAAV). The main goal of RETREAT is to develop a self-consistent dynamic model of syn-convergent extension, using the Northern Apennines as a natural laboratory. In the context of this project a passive seismological experiment was deployed in the fall of 2003 for a period of three years. RETREAT seismologists aim to develop a comprehensive understanding of the deep structure beneath the Northern Apennines, with particular attention on inferring likely patterns of mantle flow. Specific objectives of the project are the crustal and lithospheric thicknesses, the location and geometry of the Adriatic slab, and the distribution of seismic anisotropy laterally and vertically in the lithosphere and asthenosphere. The project is collecting teleseismic and regional earthquake data for 3 years. This contribution describes the RETREAT seismic deployment and reports on key results from the first year of the deployment. We confirm some prior findings regarding the seismic structure of Central Italy, but our observations also highlight the complexity of the Northern Apennines subduction system

    Expression of Six1 in luminal breast cancers predicts poor prognosis and promotes increases in tumor initiating cells by activation of extracellular signal-regulated kinase and transforming growth factor-beta signaling pathways

    Get PDF
    Abstract Introduction Mammary-specific overexpression of Six1 in mice induces tumors that resemble human breast cancer, some having undergone epithelial to mesenchymal transition (EMT) and exhibiting stem/progenitor cell features. Six1 overexpression in human breast cancer cells promotes EMT and metastatic dissemination. We hypothesized that Six1 plays a role in the tumor initiating cell (TIC) population specifically in certain subtypes of breast cancer, and that by understanding its mechanism of action, we could potentially develop new means to target TICs. Methods We examined gene expression datasets to determine the breast cancer subtypes with Six1 overexpression, and then examined its expression in the CD24low/CD44+ putative TIC population in human luminal breast cancers xenografted through mice and in luminal breast cancer cell lines. Six1 overexpression, or knockdown, was performed in different systems to examine how Six1 levels affect TIC characteristics, using gene expression and flow cytometric analysis, tumorsphere assays, and in vivo TIC assays in immunocompromised and immune-competent mice. We examined the molecular pathways by which Six1 influences TICs using genetic/inhibitor approaches in vitro and in vivo. Finally, we examined the expression of Six1 and phosphorylated extracellular signal-regulated kinase (p-ERK) in human breast cancers. Results High levels of Six1 are associated with adverse outcomes in luminal breast cancers, particularly the luminal B subtype. Six1 levels are enriched in the CD24low/CD44+ TIC population in human luminal breast cancers xenografted through mice, and in tumorsphere cultures in MCF7 and T47D luminal breast cancer cells. When overexpressed in MCF7 cells, Six1expands the TIC population through activation of transforming growth factor-beta (TGF-β) and mitogen activated protein kinase (MEK)/ERK signaling. Inhibition of ERK signaling in MCF7-Six1 cells with MEK1/2 inhibitors, U0126 and AZD6244, restores the TIC population of luminal breast cancer cells back to that observed in control cells. Administration of AZD6244 dramatically inhibits tumor formation efficiency and metastasis in cells that express high levels of Six1 ectopically or endogenously. Finally, we demonstrate that Six1 significantly correlates with phosphorylated ERK in human breast cancers. Conclusions Six1 plays an important role in the TIC population in luminal breast cancers and induces a TIC phenotype by enhancing both TGF-β and ERK signaling. MEK1/2 kinase inhibitors are potential candidates for targeting TICs in breast tumors

    Collybistin and gephyrin are novel components of the eukaryotic translation initiation factor 3 complex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Collybistin (CB), a neuron-specific guanine nucleotide exchange factor, has been implicated in targeting gephyrin-GABA<sub>A </sub>receptors clusters to inhibitory postsynaptic sites. However, little is known about additional CB partners and functions.</p> <p>Findings</p> <p>Here, we identified the p40 subunit of the eukaryotic translation initiation factor 3 (eIF3H) as a novel binding partner of CB, documenting the interaction in yeast, non-neuronal cell lines, and the brain. In addition, we demonstrated that gephyrin also interacts with eIF3H in non-neuronal cells and forms a complex with eIF3 in the brain.</p> <p>Conclusions</p> <p>Together, our results suggest, for the first time, that CB and gephyrin associate with the translation initiation machinery, and lend further support to the previous evidence that gephyrin may act as a regulator of synaptic protein synthesis.</p

    Entorhinal Denervation Induces Homeostatic Synaptic Scaling of Excitatory Postsynapses of Dentate Granule Cells in Mouse Organotypic Slice Cultures

    Get PDF
    Denervation-induced changes in excitatory synaptic strength were studied following entorhinal deafferentation of hippocampal granule cells in mature (≥3 weeks old) mouse organotypic entorhino-hippocampal slice cultures. Whole-cell patch-clamp recordings revealed an increase in excitatory synaptic strength in response to denervation during the first week after denervation. By the end of the second week synaptic strength had returned to baseline. Because these adaptations occurred in response to the loss of excitatory afferents, they appeared to be in line with a homeostatic adjustment of excitatory synaptic strength. To test whether denervation-induced changes in synaptic strength exploit similar mechanisms as homeostatic synaptic scaling following pharmacological activity blockade, we treated denervated cultures at 2 days post lesion for 2 days with tetrodotoxin. In these cultures, the effects of denervation and activity blockade were not additive, suggesting that similar mechanisms are involved. Finally, we investigated whether entorhinal denervation, which removes afferents from the distal dendrites of granule cells while leaving the associational afferents to the proximal dendrites of granule cells intact, results in a global or a local up-scaling of granule cell synapses. By using computational modeling and local electrical stimulations in Strontium (Sr2+)-containing bath solution, we found evidence for a lamina-specific increase in excitatory synaptic strength in the denervated outer molecular layer at 3–4 days post lesion. Taken together, our data show that entorhinal denervation results in homeostatic functional changes of excitatory postsynapses of denervated dentate granule cells in vitro

    Sphingosine-1-phosphate receptor-1 (S1P1) is expressed by lymphocytes, dendritic cells, and endothelium and modulated during inflammatory bowel disease

    Get PDF
    The sphingosine-1-phosphate receptor-1 (S1P1) agonist ozanimod ameliorates ulcerative colitis, yet its mechanism of action is unknown. Here, we examine the cell subsets that express S1P1 in intestine using S1P1-eGFP mice, the regulation of S1P1 expression in lymphocytes after administration of dextran sulfate sodium (DSS), after colitis induced by transfer of CD4+CD45RBhi cells, and by crossing a mouse with TNF-driven ileitis with S1P1-eGFP mice. We then assayed the expression of enzymes that regulate intestinal S1P levels, and the effect of FTY720 on lymphocyte behavior and S1P1 expression. We found that not only T and B cells express S1P1, but also dendritic (DC) and endothelial cells. Furthermore, chronic but not acute inflammatory signals increased S1P1 expression, while the enzymes that control tissue S1P levels in mice and humans with inflammatory bowel disease (IBD) were uniformly dysregulated, favoring synthesis over degradation. Finally, we observed that FTY720 reduced T-cell velocity and induced S1P1 degradation and retention of Naïve but not effector T cells. Our data demonstrate that chronic inflammation modulates S1P1 expression and tissue S1P levels and suggests that the anti-inflammatory properties of S1PR agonists might not be solely due to their lymphopenic effects, but also due to potential effects on DC migration and vascular barrier function
    corecore