355 research outputs found

    Understanding Pervasive Language Impairment in Young Children: Exploring Patterns in Narrative Language and Functional Communication

    Get PDF
    Research has identified language impairment as a pervasive disability (Bishop & Edmundson, 1987; Greenhalgh & Strong, 2001). Classroom communication behaviors have a role in the maintenance of special education eligibility and functional communication difficulties for young children with language impairment. This paper reviews the theoretical and experimental literature on narrative skills and language impairment as well as empirical support for understanding language delays as part of a group of risk factors that affect child development. The present study describes patterns in the communication skills of a small group of young children with a predetermined diagnosis of language impairment using a case and field mixed methods research design. The study contributes to our conceptual understanding of the pervasive nature of language impairment by focusing on patterns in oral narrative skills and their relationship to communication at school, at home, and in the community. Study results differentiate participants by the severity of utterance formulation difficulties as well as social communication differences and emotional health symptoms to identify patterns. This study was unique in that information from classroom teachers and parents in addition to an analysis of multiple language samples created a thick description of patterns across participants. Discussion elaborates upon patterns in the data and implications for assessment and practice implications for school based services from a speech-language pathologist

    Targeted Capture of Homoeologous Coding and Noncoding Sequence in Polyploid Cotton

    Get PDF
    Targeted sequence capture is a promising technology in many areas in biology. These methods enable efficient and relatively inexpensive sequencing of hundreds to thousands of genes or genomic regions from many more individuals than is practical using whole-genome sequencing approaches. Here, we demonstrate the feasibility of target enrichment using sequence capture in polyploid cotton. To capture and sequence both members of each gene pair (homeologs) of wild and domesticated Gossypium hirsutum, we created custom hybridization probes to target 1000 genes (500 pairs of homeologs) using information from the cotton transcriptome. Two widely divergent samples of G. hirsutum were hybridized to four custom NimbleGen capture arrays containing probes for targeted genes. We show that the two coresident homeologs in the allopolyploid nucleus were efficiently captured with high coverage. The capture efficiency was similar between the two accessions and independent of whether the samples were multiplexed. A significant amount of flanking, nontargeted sequence (untranslated regions and introns) was also captured and sequenced along with the targeted exons. Intraindividual heterozygosity is low in both wild and cultivated Upland cotton, as expected from the high level of inbreeding in natural G. hirsutum and bottlenecks accompanying domestication. In addition, levels of heterozygosity appeared asymmetrical with respect to genome (A(T) or D(T)) in cultivated cotton. The approach used here is general, scalable, and may be adapted for many different research inquiries involving polyploid plant genomes

    Distribution, functional impact, and origin mechanisms of copy number variation in the barley genome

    Get PDF
    BACKGROUND There is growing evidence for the prevalence of copy number variation (CNV) and its role in phenotypic variation in many eukaryotic species. Here we use array comparative genomic hybridization to explore the extent of this type of structural variation in domesticated barley cultivars and wild barleys. RESULTS A collection of 14 barley genotypes including eight cultivars and six wild barleys were used for comparative genomic hybridization. CNV affects 14.9% of all the sequences that were assessed. Higher levels of CNV diversity are present in the wild accessions relative to cultivated barley. CNVs are enriched near the ends of all chromosomes except 4H, which exhibits the lowest frequency of CNVs. CNV affects 9.5% of the coding sequences represented on the array and the genes affected by CNV are enriched for sequences annotated as disease-resistance proteins and protein kinases. Sequence-based comparisons of CNV between cultivars Barke and Morex provided evidence that DNA repair mechanisms of double-strand breaks via single-stranded annealing and synthesis-dependent strand annealing play an important role in the origin of CNV in barley. CONCLUSIONS We present the first catalog of CNVs in a diploid Triticeae species, which opens the door for future genome diversity research in a tribe that comprises the economically important cereal species wheat, barley, and rye. Our findings constitute a valuable resource for the identification of CNV affecting genes of agronomic importance. We also identify potential mechanisms that can generate variation in copy number in plant genomes.This work was financially supported by the following grants: project GABI-BARLEX, German Federal Ministry of Education and Research (BMBF), #0314000 to MP, US, KFXM and NS; Triticeae Coordinated Agricultural Project, USDA-NIFA #2011-68002-30029 to GJM; and Agriculture and Food Research Initiative Plant Genome, Genetics and Breeding Program of USDA’s Cooperative State Research and Extension Service, #2009-65300- 05645 to GJM

    The Arabidopsis thaliana mobilome and its impact at the species level

    Get PDF
    Transposable elements (TEs) are powerful motors of genome evolution yet a comprehensive assessment of recent transposition activity at the species level is lacking for most organisms. Here, using genome sequencing data for 211 Arabidopsis thaliana accessions taken from across the globe, we identify thousands of recent transposition events involving half of the 326 TE families annotated in this plant species. We further show that the composition and activity of the 'mobilome' vary extensively between accessions in relation to climate and genetic factors. Moreover, TEs insert equally throughout the genome and are rapidly purged by natural selection from gene-rich regions because they frequently affect genes, in multiple ways. Remarkably, loci controlling adaptive responses to the environment are the most frequent transposition targets observed. These findings demonstrate the pervasive, species-wide impact that a rich mobilome can have and the importance of transposition as a recurrent generator of large-effect alleles

    Nucleotide polymorphism and copy number variant detection using exome capture and next-generation sequencing in the polyploid grass \u3ci\u3ePanicum virgatum\u3c/i\u3e

    Get PDF
    Switchgrass (Panicum virgatum) is a polyploid, outcrossing grass species native to North America and has recently been recognized as a potential biofuel feedstock crop. Significant phenotypic variation including ploidy is present across the two primary ecotypes of switchgrass, referred to as upland and lowland switchgrass. The tetraploid switchgrass genome is approximately 1400 Mbp, split between two subgenomes, with significant repetitive sequence content limiting the efficiency of re-sequencing approaches for determining genome diversity. To characterize genetic diversity in upland and lowland switchgrass as a first step in linking genotype to phenotype, we designed an exome capture probe set based on transcript assemblies that represent approximately 50 Mb of annotated switchgrass exome sequences. We then evaluated and optimized the probe set using solid phase comparative genome hybridization and liquid phase exome capture followed by next-generation sequencing. Using the optimized probe set, we assessed variation in the exomes of eight switchgrass genotypes representing tetraploid lowland and octoploid upland cultivars to benchmark our exome capture probe set design. We identified ample variation in the switchgrass genome including 1 395 501 single nucleotide polymorphisms (SNPs), 8173 putative copy number variants and 3336 presence/absence variants. While the majority of the SNPs (84%) detected was bi-allelic, a substantial number was tri-allelic with limited occurrence of tetra-allelic polymorphisms consistent with the heterozygous and polyploid nature of the switchgrass genome. Collectively, these data demonstrate the efficacy of exome capture for discovery of genome variation in a polyploid species with a large, repetitive and heterozygous genome

    Whole exome capture in solution with 3 Gbp of data

    Get PDF
    We have developed a solution-based method for targeted DNA capture-sequencing that is directed to the complete human exome. Using this approach allows the discovery of greater than 95% of all expected heterozygous singe base variants, requires as little as 3 Gbp of raw sequence data and constitutes an effective tool for identifying rare coding alleles in large scale genomic studies

    Effective, homogeneous and transient interference with cytosine methylation in plant genomic DNA by zebularine

    Get PDF
    Covalent modification by methylation of cytosine residues represents an important epigenetic hallmark. While sequence analysis after bisulphite conversion allows correlative analyses with single-base resolution, functional analysis by interference with DNA methylation is less precise, due to the complexity of methylation enzymes and their targets. A cytidine analogue, 5-azacytidine, is frequently used as an inhibitor of DNA methyltransferases, but its rapid degradation in aqueous solution is problematic for culture periods of longer than a few hours. Application of zebularine, a more stable cytidine analogue with a similar mode of action that is successfully used as a methylation inhibitor in Neurospora and mammalian tumour cell lines, can significantly reduce DNA methylation in plants in a dose-dependent and transient manner independent of sequence context. Demethylation is connected with transcriptional reactivation and partial decondensation of heterochromatin. Zebularine represents a promising new and versatile tool for investigating the role of DNA methylation in plants with regard to transcriptional control, maintenance and formation of (hetero-) chromatin

    Comprehensive DNA methylation profiling in a human cancer genome identifies novel epigenetic targets

    Get PDF
    Using a unique microarray platform for cytosine methylation profiling, the DNA methylation landscape of the human genome was monitored at more than 21,000 sites, including 79% of the annotated transcriptional start sites (TSS). Analysis of an oligodendroglioma derived cell line LN-18 revealed more than 4000 methylated TSS. The gene-centric analysis indicated a complex pattern of DNA methylation exists along each autosome, with a trend of increasing density approaching the telomeres. Remarkably, 2% of CpG islands (CGI) were densely methylated, and 17% had significant levels of 5 mC, whether or not they corresponded to a TSS. Substantial independent verification, obtained from 95 loci, suggested that this approach is capable of large scale detection of cytosine methylation with an accuracy approaching 90%. In addition, we detected large genomic domains that are also susceptible to DNA methylation reinforced inactivation, such as the HOX cluster on chromosome 7 (CH7). Extrapolation from the data suggests that more than 2000 genomic loci may be susceptible to methylation and associated inactivation, and most have yet to be identified. Finally, we report six new targets of epigenetic inactivation (IRX3, WNT10A, WNT6, RARalpha, BMP7 and ZGPAT). These targets displayed cell line and tumor specific differential methylation when compared with normal brain samples, suggesting they may have utility as biomarkers. Uniquely, hypermethylation of the CGI within an IRX3 exon was correlated with over-expression of IRX3 in tumor tissues and cell lines relative to normal brain samples

    Distribution, functional impact, and origin mechanisms of copy number variation in the barley genome

    Get PDF
    BACKGROUND: There is growing evidence for the prevalence of copy number variation (CNV) and its role in phenotypic variation in many eukaryotic species. Here we use array comparative genomic hybridization to explore the extent of this type of structural variation in domesticated barley cultivars and wild barleys. RESULTS: A collection of 14 barley genotypes including eight cultivars and six wild barleys were used for comparative genomic hybridization. CNV affects 14.9% of all the sequences that were assessed. Higher levels of CNV diversity are present in the wild accessions relative to cultivated barley. CNVs are enriched near the ends of all chromosomes except 4H, which exhibits the lowest frequency of CNVs. CNV affects 9.5% of the coding sequences represented on the array and the genes affected by CNV are enriched for sequences annotated as disease-resistance proteins and protein kinases. Sequence-based comparisons of CNV between cultivars Barke and Morex provided evidence that DNA repair mechanisms of double-strand breaks via single-stranded annealing and synthesis-dependent strand annealing play an important role in the origin of CNV in barley. CONCLUSIONS: We present the first catalog of CNVs in a diploid Triticeae species, which opens the door for future genome diversity research in a tribe that comprises the economically important cereal species wheat, barley, and rye. Our findings constitute a valuable resource for the identification of CNV affecting genes of agronomic importance. We also identify potential mechanisms that can generate variation in copy number in plant genomes
    corecore