277 research outputs found

    Analysis of concentration-dependent effects of copper and PCB on different Chattonella spp. microalgae (Raphidophyceae) cultivated in artificial seawater medium

    Get PDF
    In the present study, the effect on the chlorophyll a and the total protein content as well as the Chattonella spp. cell viability were examined after concentration-dependent exposure to CuCl2 and Aroclor 1242. The comparison between various raphidophyte strains provides an insight into the different susceptibilities to contaminants of Chattonella subsalsa (CSNAV-1), C. marina var . marina (CMCV-1) and C. marina var. ovata (COPV-2). The microalgae were cultivated in artificial seawater medium. Exponentially growing microalgae (8-10 days in culture) were used for exposure experiments. We observed in all three raphidophyte species cytotoxicity-mediated modifications beginning at concentrations of 150 and 200μM of the heavy metal copper after 24 hours exposure. But interestingly, the three strains exhibited only slight differences in their susceptibility to CuCl2. C. subsalsa and C. marina var. marina cells were first affected at the chlorophyll a level and in cell viability. The total protein amount was reduced significantly only after exposure to 300μM of CuCl2. However, C. marina var. ovata microalgae showed similar reduction curves for all three analysed cytotoxicity endpoints after heavy metal exposure. On the other hand, after Aroclor 1242 incubation the cytotoxic modification pattern indicated clearly the different susceptibilities of the three raphidophyte strains. C. subsalsa cells noticeably exhibited a decrease in the analysed pigment amount (30-20% compared to that of the control) already after 0.007mg/L PCB exposure. In contrast, cell viability and total protein content were slightly reduced and fell below the 50% threshold after 0.7 and 3.3mg/L of Aroclor 1242, respectively. Interestingly, C. marina var. ovata showed almost no cytotoxic modification caused by the PCB mixture. Only the concentration of 0.7mg/L Aroclor 1242 clearly affected the cell viability. As opposed to that we observed a concentration-dependent decrease of cell viability and chlorophyll a amount in CMCV-1 microalgae. These observations confirmed that the susceptibility of the raphidophytes strains CSNAV-1, CMCV-1 and COPV-2 is contaminant- dependent. We showed differences even between two variants of Chattonella (Chattonella marina var. marina and C. marina var. ovata). Furthermore, we were able to show the different mode of action of two common pollutants by simple cytotoxic parameters like total protein and chlorophyll a content as well as by cell counting analysis

    Wavelet-Based Image Registration and Segmentation Framework for the Quantitative Evaluation of Hydrocephalus

    Get PDF
    Hydrocephalus, characterized by increased fluid in the cerebral ventricles, is traditionally evaluated by a visual assessment of serial CT scans. The complex shape of the ventricular system makes accurate visual comparison of CT scans difficult. The current research developed a quantitative method to measure the change in cerebral ventricular volume over time. Key elements of the developed framework are: adaptive image registration based on mutual information and wavelet multiresolution analysis; adaptive segmentation with novel feature extraction based on the Dual-Tree Complex Wavelet Transform; volume calculation. The framework, when tested on physical phantoms, had an error of 2.3%. When validated on clinical cases, results showed that cases deemed to be normal/stable had a calculated volume change less than 5%. Those with progressive/treated hydrocephalus had a calculated change greater than 20%. These findings indicate that the framework is reasonable and has potential for development as a tool in the evaluation of hydrocephalus

    Ecosystemic resilience of a temperate post-fire forest under extreme weather conditions

    Get PDF
    IntroductionThe effects of climate change are exacerbating the fire risk in forests worldwide. Conifer plantations in particular are especially vulnerable to fire outbreaks. At the end of the extraordinarily hot and dry summer of 2018, a forest pine plantation burned in Brandenburg, NE Germany. Different forestry interventions were carried out after the fire, while one area of the damaged plantation remained untouched.MethodsWe investigated the resilience of the forest ecosystem and the effectiveness of different active and passive forest restoration measures during the subsequent relatively warm and dry years 2019–2021.ResultsOne year after the fire, Populus tremula showed strong spontaneous colonization at all sites. In contrast, the majority of planted Pinus sylvestris plantlets died on the plots that had been salvage-logged after the fire. Three years after the fire, Populus tremula successfully established itself as the dominant tree species on all plots, with the highest abundance on the plot where the overstorey of the dead pines was left. Betula pendula, Salix caprea, and Pinus sylvestris showed lower abundance, with their proportion increasing with decreasing cover by dead trees. The distribution of regrowing trees is very heterogeneous across the different treatments and plots. In the clear-cut plots, the extreme microclimatic conditions expose the young trees to additional heat and drought, while the retention of deadwood measurably buffers the temperature and water stress.DiscussionThe resilience and adaptability of naturally regenerating forests that develop into ecosystems that are more diverse seem more promising than restoration through intervention. Apart from hampering restoration under extreme weather conditions, post-fire salvage logging contributes to soil degradation and loss of organic carbon

    Treatment of Older Patients With Mantle Cell Lymphoma (MCL):Long-Term Follow-Up of the Randomized European MCL Elderly Trial

    Get PDF
    PURPOSE: In an update of the randomized, open-label, phase III European Mantle Cell Lymphoma (MCL) Elderly trial (ClinicalTrials.gov identifier: NCT00209209), published in 2012, we aimed to confirm results on long-term outcome focusing on efficacy and safety of long-term use of rituximab maintenance. PATIENTS AND METHODS: Five hundred sixty patients with newly diagnosed MCL underwent a first random assignment between rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) and rituximab, fludarabine, and cyclophosphamide (R-FC) induction, followed by a second random assignment in 316 responders between rituximab and interferon alfa maintenance, to be continued until progression. We compared progression-free survival from the second randomization and overall survival (OS) from the first or second randomizations. RESULTS: After a median follow-up time of 7.6 years, the previously described difference in OS between the induction arms persisted (median, 6.4 years after R-CHOP [n = 280] v 3.9 years after R-FC [n = 280]; P = .0054). Patients responding to R-CHOP had median progression-free survival and OS times of 5.4 and 9.8 years, respectively, when randomly assigned to rituximab (n = 87), compared with 1.9 years (P < .001) and 7.1 years (P = .0026), respectively, when randomly assigned to interferon alfa (n = 97). In 58% and 32% of patients treated with R-CHOP, rituximab maintenance was still ongoing 2 and 5 years from start of maintenance, respectively. After R-FC, rituximab maintenance was associated with an unexpectedly high cumulative incidence of death in remission (22% at 5 years). Toxicity of rituximab maintenance was low after R-CHOP (grade 3-4 leukopenia or infection < 5%) but more prominent in patients on rituximab maintenance after R-FC, in whom grade 3-4 leukopenia (up to 40%) and infections were frequent (up to 15%). CONCLUSION: The excellent results of R-CHOP followed by rituximab maintenance until progression for older patients with MCL persisted in a mature follow-up. Prolongation of rituximab maintenance beyond 2 years is effective and safe

    Polymorphisms in the Mitochondrial Genome Are Associated With Bullous Pemphigoid in Germans

    Get PDF
    Bullous pemphigoid (BP) is the most prevalent autoimmune skin blistering disease and is characterized by the generation of autoantibodies against the hemidesmosomal proteins BP180 (type XVII collagen) and BP230. Most intriguingly, BP is distinct from other autoimmune diseases because it predominantly affects elderly individuals above the age of 75 years, raising the question why autoantibodies and the clinical lesions of BP emerges mostly in this later stage of life, even in individuals harboring known putative BP-associated germline gene variants. The mitochondrial genome (mtDNA) is a potential candidate to provide additional insights into the BP etiology; however, the mtDNA has not been extensively explored to date. Therefore, we sequenced the whole mtDNA of German BP patients (n = 180) and age- and sex-matched healthy controls (n = 188) using next generation sequencing (NGS) technology, followed by the replication study using Sanger sequencing of an additional independent BP (n = 89) and control cohort (n = 104). While the BP and control groups showed comparable mitochondrial haplogroup distributions, the haplogroup T exhibited a tendency of higher frequency in BP patients suffering from neurodegenerative diseases (ND) compared to BP patients without ND (50%; 3 in 6 BP with haplogroup T). A total of four single nucleotide polymorphisms (SNPs) in the mtDNA, namely, m.16263T>C, m.16051A>G, and m.16162A>G in the D-loop region of the mtDNA, and m.11914G>A in the mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 4 gene (MT-ND4), were found to be significantly associated with BP based on the meta-analysis of our NGS data and the Sanger sequencing data (p = 0.0017, p = 0.0129, p = 0.0076, and p = 0.0132, respectively, Peto's test). More specifically, the three SNPs in the D-loop region were negatively, and the SNP in the MT-ND4 gene was positively associated with BP. Our study is the first to interrogate the whole mtDNA in BP patients and controls and to implicate multiple novel mtDNA variants in disease susceptibility. Studies using larger cohorts and more diverse populations are warranted to explore the functional consequences of the mtDNA variants identified in this study on immune and skin cells to understand their contributions to BP pathology

    Polymorphisms in the Mitochondrial Genome Are Associated With Bullous Pemphigoid in Germans

    Get PDF
    Bullous pemphigoid (BP) is the most prevalent autoimmune skin blistering disease and is characterized by the generation of autoantibodies against the hemidesmosomal proteins BP180 (type XVII collagen) and BP230. Most intriguingly, BP is distinct from other autoimmune diseases because it predominantly affects elderly individuals above the age of 75 years, raising the question why autoantibodies and the clinical lesions of BP emerges mostly in this later stage of life, even in individuals harboring known putative BP-associated germline gene variants. The mitochondrial genome (mtDNA) is a potential candidate to provide additional insights into the BP etiology; however, the mtDNA has not been extensively explored to date. Therefore, we sequenced the whole mtDNA of German BP patients (n = 180) and age- and sex-matched healthy controls (n = 188) using next generation sequencing (NGS) technology, followed by the replication study using Sanger sequencing of an additional independent BP (n = 89) and control cohort (n = 104). While the BP and control groups showed comparable mitochondrial haplogroup distributions, the haplogroup T exhibited a tendency of higher frequency in BP patients suffering from neurodegenerative diseases (ND) compared to BP patients without ND (50%; 3 in 6 BP with haplogroup T). A total of four single nucleotide polymorphisms (SNPs) in the mtDNA, namely, m.16263T>C, m.16051A>G, and m.16162A>G in the D-loop region of the mtDNA, and m.11914G>A in the mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 4 gene (MT-ND4), were found to be significantly associated with BP based on the meta-analysis of our NGS data and the Sanger sequencing data (p = 0.0017, p = 0.0129, p = 0.0076, and p = 0.0132, respectively, Peto's test). More specifically, the three SNPs in the D-loop region were negatively, and the SNP in the MT-ND4 gene was positively associated with BP. Our study is the first to interrogate the whole mtDNA in BP patients and controls and to implicate multiple novel mtDNA variants in disease susceptibility. Studies using larger cohorts and more diverse populations are warranted to explore the functional consequences of the mtDNA variants identified in this study on immune and skin cells to understand their contributions to BP pathology

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
    corecore