113 research outputs found

    Analysis of the photosynthetic apparatus in transgenic tobacco plants with altered endogenous cytokinin content: a proteomic study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cytokinin is a plant hormone that plays a crucial role in several processes of plant growth and development. In recent years, major breakthroughs have been achieved in the elucidation of the metabolism, the signal perception and transduction, as well as the biological functions of cytokinin. An important activity of cytokinin is the involvement in chloroplast development and function. Although this biological function has already been known for 50 years, the exact mechanisms remain elusive.</p> <p>Results</p> <p>To elucidate the effects of altered endogenous cytokinin content on the structure and function of the chloroplasts, chloroplast subfractions (stroma and thylakoids) from transgenic P<it>ssu</it>-<it>ipt </it>and <it>35S:CKX1 </it>tobacco (<it>Nicotiana tabacum</it>) plants with, respectively, elevated and reduced endogenous cytokinin content were analysed using two different 2-DE approaches. Firstly, thykaloids were analysed by blue-native polyacrylamide gel electrophoresis followed by SDS-PAGE (BN/SDS-PAGE). Image analysis of the gel spot pattern thus obtained from thylakoids showed no substantial differences between wild-type and transgenic tobacco plants. Secondly, a quantitative DIGE analysis of CHAPS soluble proteins derived from chloroplast subfractions indicated significant gel spot abundance differences in the stroma fraction. Upon identification by MALDI-TOF/TOF mass spectrometry, these proteins could be assigned to the Calvin-Benson cycle and photoprotective mechanisms.</p> <p>Conclusion</p> <p>Taken together, presented proteomic data reveal that the constitutively altered cytokinin status of transgenic plants does not result in any qualitative changes in either stroma proteins or protein complexes of thylakoid membranes of fully developed chloroplasts, while few but significant quantitative differences are observed in stroma proteins.</p

    Characterization of newly isolated lytic bacteriophages active against Acinetobacter baumannii

    Get PDF
    Based on genotyping and host range, two newly isolated lytic bacteriophages, myovirus vB_AbaM_Acibel004 and podovirus vB_AbaP_Acibel007, active against Acinetobacter baumannii clinical strains, were selected from a new phage library for further characterization. The complete genomes of the two phages were analyzed. Both phages are characterized by broad host range and essential features of potential therapeutic phages, such as short latent period (27 and 21 min, respectively), high burst size (125 and 145, respectively), stability of activity in liquid culture and low frequency of occurrence of phage-resistant mutant bacterial cells. Genomic analysis showed that while Acibel004 represents a novel bacteriophage with resemblance to some unclassified Pseudomonas aeruginosa phages, Acibel007 belongs to the well-characterized genus of the Phikmvlikevirus. The newly isolated phages can serve as potential candidates for phage cocktails to control A. baumannii infections

    Integrative omics analysis of Pseudomonas aeruginosa virus PA5oct highlights the molecular complexity of jumbo phages

    Get PDF
    Pseudomonas virus vB_PaeM_PA5oct is proposed as a model jumbo bacteriophage to investigate phage-bacteria interactions and is a candidate for phage therapy applications. Combining hybrid sequencing, RNA-Seq and mass spectrometry allowed us to accurately annotate its 286,783 bp genome with 461 coding regions including four non-coding RNAs (ncRNAs) and 93 virion-associated proteins. PA5oct relies on the host RNA polymerase for the infection cycle and RNA-Seq revealed a gradual take-over of the total cell transcriptome from 21% in early infection to 93% in late infection. PA5oct is not organized into strictly contiguous regions of temporal transcription, but some genomic regions transcribed in early, middle and late phases of infection can be discriminated. Interestingly, we observe regions showing limited transcription activity throughout the infection cycle. We show that PA5oct upregulates specific bacterial operons during infection including operons pncA-pncB1-nadE involved in NAD biosynthesis, psl for exopolysaccharide biosynthesis and nap for periplasmic nitrate reductase production. We also observe a downregulation of T4P gene products suggesting mechanisms of superinfection exclusion. We used the proteome of PA5oct to position our isolate amongst other phages using a gene-sharing network. This integrative omics study illustrates the molecular diversity of jumbo viruses and raises new questions towards cellular regulation and phage-encoded hijacking mechanisms

    A proposed integrated approach for the preclinical evaluation of phage therapy in Pseudomonas infections

    Get PDF
    Bacteriophage therapy is currently resurging as a potential complement/alternative to antibiotic treatment. However, preclinical evaluation lacks streamlined approaches. We here focus on preclinical approaches which have been implemented to assess bacteriophage efficacy against Pseudomonas biofilms and infections. Laser interferometry and profilometry were applied to measure biofilm matrix permeability and surface geometry changes, respectively. These biophysical approaches were combined with an advanced Airway Surface Liquid infection model, which mimics in vitro the normal and CF lung environments, and an in vivo Galleria larvae model. These assays have been implemented to analyze KTN4 (279,593 bp dsDNA genome), a type-IV pili dependent, giant phage resembling phiKZ. Upon contact, KTN4 immediately disrupts the P. aeruginosa PAO1 biofilm and reduces pyocyanin and siderophore production. The gentamicin exclusion assay on NuLi-1 and CuFi-1 cell lines revealed the decrease of extracellular bacterial load between 4 and 7 logs and successfully prevents wild-type Pseudomonas internalization into CF epithelial cells. These properties and the significant rescue of Galleria larvae indicate that giant KTN4 phage is a suitable candidate for in vivo phage therapy evaluation for lung infection applications

    Microbiological and Molecular Assessment of Bacteriophage ISP for the Control of Staphylococcus aureus

    Get PDF
    The increasing antibiotic resistance in bacterial populations requires alternatives for classical treatment of infectious diseases and therefore drives the renewed interest in phage therapy. Methicillin resistant Staphylococcus aureus (MRSA) is a major problem in health care settings and live-stock breeding across the world. This research aims at a thorough microbiological, genomic, and proteomic characterization of S. aureus phage ISP, required for therapeutic applications. Host range screening of a large batch of S. aureus isolates and subsequent fingerprint and DNA microarray analysis of the isolates revealed a substantial activity of ISP against 86% of the isolates, including relevant MRSA strains. From a phage therapy perspective, the infection parameters and the frequency of bacterial mutations conferring ISP resistance were determined. Further, ISP was proven to be stable in relevant in vivo conditions and subcutaneous as well as nasal and oral ISP administration to rabbits appeared to cause no adverse effects. ISP encodes 215 gene products on its 138,339 bp genome, 22 of which were confirmed as structural proteins using tandem electrospray ionization-mass spectrometry (ESI-MS/MS), and shares strong sequence homology with the ‘Twort-like viruses’. No toxic or virulence-associated proteins were observed. The microbiological and molecular characterization of ISP supports its application in a phage cocktail for therapeutic purposes

    Novel N4-like bacteriophages of pectobacterium atrosepticum

    Get PDF
    Pectobacterium atrosepticum is an economically important phytopathogen that is responsible for potato blackleg and soft rot, and for which current control strategies are limited. In this study, stem samples of potato crops exhibiting blackleg were taken from three farms in Co. Cork, Ireland, and they were found to be infected with P. atrosepticum. Three closely related bacteriophages (phages) that are specific to this phytopathogen were isolated and characterized, namely vB_PatP_CB1, vB_PatP_CB3, and vB_PatP_CB4 (abbreviated as CB1, CB3, and CB4). Both CB1 and CB3 were determined to infect 12 strains and CB4 10 strains of the 19 strains of P. atrosepticum tested. Morphology, latent periods, burst sizes, and their stability at various temperatures and pHs were also examined. Genome sequencing of the three phages revealed that they shared a minimum nucleotide identity of 93% with each other. Their genomes exhibited an Enquartavirinae genome organization, possessing several conserved proteins that were associated with phages of this group, like the type species Escherichia virus N4. Tandem electrospray ionization-mass spectrometry (ESI-MS/MS) allowed for the identification of ten structural proteins that form the virion of CB1, six that are conserved in phage N4. Biocontrol experiments demonstrated that the phages suppress soft rot formation upon co-inoculation with P. atrosepticum on whole tubers. The results of this study indicate that CB1 related phages could be good candidates for phage-based control

    Biocidal inactivation of Lactococcus lactis bacteriophages: efficacy and targets of commonly used sanitizers

    Get PDF
    Lactococcus lactis strains, being intensely used in the dairy industry, are particularly vulnerable to members of the so-called 936 group of phages. Sanitization and disinfection using purpose-made biocidal solutions is a critical step in controlling phage contamination in such dairy processing plants. The susceptibility of 36 936 group phages to biocidal treatments was examined using 14 biocides and commercially available sanitizers. The targets of a number of these biocides were investigated by means of electron microscopic and proteomic analyses. The results from this study highlight significant variations in phage resistance to biocides among 936 phages. Furthermore, rather than possessing resistance to specific biocides or biocide types, biocide-resistant phages tend to possess a broad tolerance to multiple classes of antimicrobial compounds

    Erratum for Oliveira et al., "Functional Analysis and Antivirulence Properties of a New Depolymerase from a Myovirus That Infects Acinetobacter baumannii Capsule K45"

    Get PDF
    Volume 93, no. 4, e01163-18, 2019, https://doi.org/10.1128/JVI.01163-18. Page 14, Acknowledgments, line 4: (POCI-01-0145-FEDER-016678) should read (POCI-01-0145-FEDER-016643).info:eu-repo/semantics/publishedVersio
    • 

    corecore