5 research outputs found

    Genetic and Epigenetic Approaches for the Possible Detection of Adulteration and Auto-Adulteration in Saffron (Crocus sativus L.) Spice

    No full text
    Saffron (Crocus sativus L.) is very expensive and, because of this, often subject to adulteration. Modern genetic fingerprinting techniques are an alternative low cost technology to the existing chemical techniques, which are used to control the purity of food products. Buddleja officinalis Maxim, Gardenia jasminoides Ellis, Curcuma longa L., Carthamus tinctorius L. and Calendula officinalis L. are among the most frequently-used adulterants in saffron spice. Three commercial kits were compared concerning the ability to recover PCR-gradeDNAfrom saffron, truly adulterated samples and possible adulterants, with a clear difference among them, mainly with the processed samples. Only one of the three kits was able to obtain amplifiable DNA from almost all of the samples, with the exception of extracts. On the recovered DNA, new markers were developed based on the sequence of the plastid genes matK and rbcL. These primers, mainly those developed on matK, were able to recognize saffron and the adulterant species and also in mixtures with very low percentages of adulterant. Finally, considering that the addition of different parts of saffron flowers is one of the most widespread adulterations, by analyzing the DNA of the different parts of the flower (styles, stamens and tepals) at the genetic and epigenetic level, we succeeded in finding differences between the three tissues that can be further evaluated for a possible detection of the kind of fraud

    Compliance with Early Long-Term Prophylaxis Guidelines for Severe Hemophilia A

    No full text
    International audienceObjectives: To evaluate the applicability and compliance with guidelines for early initiation of long-term prophylaxis in infants with severe hemophilia A and to identify factors associated with guideline compliance.Study design: This real-world, prospective, multicenter, population-based FranceCoag study included almost all French boys with severe hemophilia A, born between 2000 and 2009 (ie, after guideline implementation).Results: We included 333 boys in the study cohort. The cumulative incidence of long-term prophylaxis use was 61.2% at 3 years of age vs 9.5% in a historical cohort of 39 boys born in 1996 (ie, before guideline implementation). The guidelines were not applicable in 23.1% of patients due to an early intracranial bleeding or inhibitor development. Long-term prophylaxis was delayed in 10.8% of patients. In the multivariate analysis, 2 variables were significantly associated with "timely long-term prophylaxis" as compared with "delayed long-term prophylaxis": hemophilia treating center location in the southern regions of France (OR 23.6, 95% CI 1.9-286.7, P = .013 vs Paris area) and older age at long-term prophylaxis indication (OR 7.2 for each additional year, 95% CI 1.2-43.2, P = .031). Long-term prophylaxis anticipation was observed in 39.0% of patients. Earlier birth year (OR 0.5, 95% CI 0.3-0.8, P = .010 for birth years 2005-2009 vs 2000-2004) and age at first factor replacement (OR 1.9 for each additional year, 95% CI 1.2-3.0, P = .005) were significantly associated with "long-term prophylaxis guideline compliance" vs "long-term prophylaxis anticipation."Conclusions: This study suggests that long-term prophylaxis guidelines are associated with increased long-term prophylaxis use. However, early initiation of long-term prophylaxis remains a challenge

    The World Saffron and Crocus collection: strategies for establishment, management, characterisation and utilisation

    Get PDF
    [EN] Since 2007, the European Commission AGRI GEN RES 018 "CROCUSBANK" action has permitted the creation of the alleged World Saffron and Crocus Collection (WSCC), a unique collection which contains a representation of the genetic variability present in saffron crop and wild relatives at global scale. At present the germplasm collection, housed at the Bank of Plant Germplasm of Cuenca (BGV-CU, Spain), consists of 572 preserved accessions representing 47 different Crocus species (including saffron Crocus) and is expected to increase up to more than 600 accessions by the end of CROCUSBANK action (May 2011). The preserved biodiversity of saffron (Crocus sativus L.) covers a wide range of the genetic variability of the crop and currently consists of 220 accessions from 15 countries: 169 of these come from European cultivation countries, 18 from commercial areas in non EU countries, 26 from regions of minimal or relict production and/or from abandoned fields and 7 from commercial nurseries. The non-saffron Crocus collection currently comprises 352 accessions: 179 collected from the wild in 12 countries of natural distribution, 24 from donations of public and private institutions, 91 from commercial nurseries and 58 acquired from BGV-CU collection management. Here we provide a record of collections, activities concerns and current strategies for documentation, conservation, characterisation, and management of the collection as important tools for researchers with interest in these valuable genetic resources.Many of the results presented in this paper are an outcome of the project "Genetic Resources of Saffron and Allies" (CROCUSBANK, http://www.crocusbank.org). This action receives financial support from the European Commission, Directorate General for Agriculture and Rural Development, under the Council Regulation (EC) No. 870/2004 establishing a Community Programme on the conservation, characterisation, collection, and utilisation of genetic resources in Agriculture (018 AGRI GEN RES ACTION). In addition some of the activities presented took a long period of time and have been partially supported by the following projects or actions: RFP-1 (Consejeria de Agricultura, JCCM, Spain), 05-172/IA-35 (Consejeria de Agricultura, JCCM, Spain), PAI09-0021-0413 and PBI09-0025-1537 (Consejeria de Educacion y Ciencia, JCCM, Spain), RF2008-0012-C03 (Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria, MEC, Spain), RF2004-0032-C03 (Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria, MEC, Spain). Special thanks to the following donor's institutions: Regulatory Council for the "La Mancha Saffron" designation of origin (DOP, La Mancha, Spain); The Royal Veterinary and Agricultural University (Denmark); Asociacion de Naturalistas del Sureste (ANSE, Spain); Centro de Investigacion y Tecnologia Agroalimentaria de Aragon (CITA, Spain); MTS Schipper & Elberse (Holland); Botanic Garden Utrecht University (The Netherlands); National Botanic Garden of Belgium (Belgium); Jardin Alpin du Lautaret (France); Frega S. R. L. (Argentina); Conservatoire et Jardin Botaniques de la Ville Geneve (Switzerland); Herbario Sant (Spain); Conservatoire Botanique National de Brest (France); Jardin des Plantes Medicinales et Aromatiques (France); Baby Brand Saffron (India); Azienda Agricola di Di Marco Amalia (Italy); Azienda Agricola IL Vecchio Maneggio (Italy); New Zealand Institute for Crop and Food Research (New Zealand); Ljubljana University Botanic Garden (Slovenia) and the Afghanistan Government. We thank very much the traditional saffron growers of different countries (Spain, France, Greece, Italy, Iran, Morocco, etc.), associations, companies, researchers, forest rangers and all the people who have contributed with materials included in the collection (for more detailed information see the website www.crocusbank.org).Fernandez, J.; Santana, O.; Guardiola, J.; Molina Romero, RV.; Heslop-Harrison, P.; Borbely, G.; Branca, F.... (2011). The World Saffron and Crocus collection: strategies for establishment, management, characterisation and utilisation. Genetic Resources and Crop Evolution. 58(1):125-137. https://doi.org/10.1007/s10722-010-9601-5S125137581Abdullaev FI (2002) Cancer chemopreventive and tumoricidal properties of saffron (Crocus sativus L.). Exp Biol Med Maywood 227:20–25Abdullaev FI (2004) Antitumor effect of saffron (Crocus sativus L.). Overview and perspectives. Acta Hort (ISHS) 650:491–499Abdullaev FI, Espinosa-Aguirre JJ (2004) Biomedical properties of saffron and its potential use in cancer therapy and chemoprevention trials. Cancer Detect Prev 28:426–432Agrawal RC, Behera D, Saxena S (2007) Genebank information management system (GBIMS). Comput Electron Agric 59:90–96Arslan N, Ozer AS, Akdemir R (2007) Cultivation of saffron (Crocus sativus L.) and effects of organic fertilizers to the flower yield. Acta Hort (ISHS) 826:237–240Bioversity International (2007) Guidelines for the development of crop descriptor list. Bioversity Technical Bulletin Series. Bioversity International. Rome, Italy, Xii +72 pCBD (1993) Convention on biological diversity. http://www.biodiv.org/convention/articles.aspDalezis P, Papageorgiou E, Geromichalou E, Geromichalus G (2009) Antitumor activity of crocin, crocetin and safranal on murine P388 leukemia bearing mice. In: 3rd International symposium on saffron Forthcoming challenges in cultivation research and economics. Krokos, Kozani, Greece 58. Book of Abstracts, p 58De-Los-Mozos-Pascual M, Roldán M, Fernández JA (2010a) Preserving biodiversity in saffron: the CROCUSBANK project and the world saffron and Crocus collection. Acta Hort (ISHS) 850:23–28De-Los-Mozos-Pascual M, Santana O, Rodríguez MF, Sánchez R, Pastor T, Sanchís E, García A, Guardiola JL, Molina RV, Medina J, Fernández JA (2010b) Current state of the Spanish germplasm collection of saffron and wild relatives. Acta Hort (ISHS) 850:303–308De-Los-Mozos-Pascual M, Santana O, Rodríguez MF, Sánchez R, Pastor T, Fernández JA, Santaella M, Sánchez RA, Verwulgen T, Palacios M, Renau B, Sanchís E, García A, Guardiola JL, Molina RV (2010c) A preliminary characterisation of saffron germplasm from the CROCUSBANK collection. Acta Hort (ISHS) 850:35–40Engels JMM, Visser L (eds) (2003) A guide to effective management of germplasm collections. IPGRI Handbooks for Genebanks No 6. IPGRI, Rome, ItalyFernández JA (2004) Biology, biotechnology and biomedicine of saffron. Recent Res Dev Plant Sci 2:127–159Fernández JA (2007) Genetic resources of saffron and allies (Crocus spp.). Acta Hort (ISHS) 739:167–185Goldblatt P, Davies TJ, Manning JC, van der Bank M, Savolainen V (2006) Phylogeny of Iridaceae subfamily Crocoideae based on a combined multigeneplastid DNA analysis. Aliso 22:399–411Khoury C, Laliberté B, Guariano L (2010) Trends in ex situ conservation of plant genetic resources: a review of global crop and regional conservation strategies. Genet Resour Crop Evol 57:625–639Mathew B (1977) Crocus sativus and its allies (Iridaceae). Plant Syst Evol 128:89–103Mathew B (1982) The Crocus. A revision of the genus Crocus (Iridaceae). Timber Press, PortlandMaxted N, Scholten M, Codd R, Ford-Lloyd B (2007) Creation and use of national inventory of crop wild relatives. Biol Conserv 140:142–159Pandey A, Pandey R, Negi KS, Radhamani J (2008) Realizing value of genetic resources of Allium in India. Genet Resour Crop Evol 55:985–994Petersen G, Seberg O, Thorsoe S, Jorgensen T, Mathew B (2008) A phylogeny of the genus Crocus (Iridaceae) based on sequence data from five plastid regions. Taxon 57:487–499Radjabian T, Ghazanfari T, Daniali F (2009) The effect of crocetin on cell-mediated immunity in BALB/c mice. In: 3rd International symposium on saffron “Forthcoming challenges in cultivation research and economics. Krokos, Kozani, Book of Abstracts, p 57Rashed-Mohassel MH (2007) Saffron from the wild to the field. Acta Hort (ISHS) 739:187–193Ravisankar H, Sarala K, Krishnamurthy V, Rao RVS (2008) A software system for tobacco germplasm data. Plant genetic resources: Characterisation and Utilisation 1–4Santana O, De-Los-Mozos-Pascual M, Fernández JA (2010) Public disclosure, interpretation and displaying the “World Saffron and Crocus Collection” through the CROCUSBANK website. Acta Hort (ISHS) 850:95–98Tsoktouridis G, Krigas N, Karamplianis T, Constantinidis T, Maloupa E (2009) Genetic differences among wild Greek Crocus taxa and cultivated saffron (Crocus sativus L.). In: 3rd International symposium on saffron Forthcoming challenges in cultivation research and economics. Krokos, Kozani, Greece Book of Abstracts, p 37Upadhyaya HD, Gowda CLL, Pundir RPS, Gopal Reddy V, Singh Sube (2006) Development a core subset of finger millet germplasm using geographical origin and data on 14 quantitative traits. Genet Resour Crop Evol 53:679–685Upadhyaya HD, Gowda CLL, Sastry DVSSR (2008) Plant Genetic resources management: collection, characterisation, conservation and utilisation. J SAT Agric Res 6:1–16Wallace TP, Bowman D, Campbell BT, Chee P, Gutierrez OA, Kohel RJ, McCarty J, Myers G, Percy R, Robinson F, Smith W, Stelly DM, Stewart JM, Thaxton P, Ulloa M, Weaver DB (2008) Status of the USA cotton germplasm collection and crop vulnerability. Genet Resour Crop Evol 56:507–53
    corecore