308 research outputs found

    Caractérisation et stabilité de la matière organique du sol en contexte montagnard calcaire (proposition d'indicateurs pour le suivi de la qualité des sols à l'échelle du paysage)

    Get PDF
    Les sols de montagne représentent d'importants réservoirs de carbone (C) potentiellement vulnérables aux changements climatiques et changements d'usage qui les affectent de manière amplifiée. Or la grande variabilité de ces milieux, leur faible accessibilité ainsi que le manque d'outils de mesure appropriés limitent nos connaissances qui restent aujourd'hui très fragmentaires en ce qui concerne les stocks, la chimie et la réactivité du carbone organique des sols (COS). Ces informations sont pourtant nécessaires pour appréhender l'évolution de ces sols et de leur C dans ce contexte de changements globaux. Les objectifs de ce travail de thèse étaient (i) d'accéder à une meilleure compréhension de la nature, de la stabilité et de la vulnérabilité du COS dans une mosaïque d'écosystèmes des Préalpes calcaires (massif du Vercors), (ii) de rechercher des outils de caractérisation rapides et fiables adaptés à l'étude et au suivi du COS à l'échelle du paysage, et enfin (iii) de proposer des indices pour l'évaluation et le suivi de la qualité des sols en milieu de montagne. Dans un premier temps, nous avons testé l'application de la pyrolyse Rock-Eval pour l'étude du COS à grande échelle sur un ensemble d'unités écosystémiques. Nous avons ensuite comparé la pyrolyse Rock-Eval à deux techniques classiques d'étude de la matière organique du sol (MOS) : le fractionnement granulodensimétrique de la MOS et la spectroscopie moyen infrarouge. Ces approches analytiques couplées nous ont permis de quantifier les stocks de C à l'échelle de la zone d'étude et d'expliquer la stabilité et la vulnérabilité du COS sous des angles variés. Les facteurs responsables des patrons observés dans les différentes unités écosystémiques sont discutés. Ce travail a également confirmé la pertinence de l'outil Rock-Eval pour répondre aux objectifs fixés. Parallèlement, des approches biologiques nous ont permis d'évaluer l'importance de la composante microbienne dans ces sols. Enfin, des indices évaluant le statut organique des sols (stockage de COS, fertilité des sols, vulnérabilité du COS) sont proposés pour constituer des outils de gestion et d'aide à la décision.Mountain soils are major reservoirs of carbon (C), potentially vulnerable to climate and land use changes that affect them significantly. However, the great variability of these soils, their limited accessibility and the lack of appropriate measurement tools restrict our knowledge. Today, our comprehension of the biogeochemistry of mountain soils remains very incomplete regarding stocks, chemistry and reactivity of soil organic carbon (SOC). Yet this information is necessary to understand the evolution of soil carbon in the current context of global change. The objectives of this work were (i) to gain a better understanding of the nature, stability and vulnerability of SOC in a mosaic of ecosystems in a calcareous massif in the Alps (Vercors massif), (ii) to search for fast and reliable characterization tools, suitable for the study and monitoring of COS at the landscape scale, and (iii) to propose indicators for the assessment and monitoring of soil quality in mountain regions. As a first step, we tested the application of Rock-Eval pyrolysis for the study of COS at large-scale on a set of ecosystem units. Then, we compared the Rock-Eval approach to two conventional techniques for soil organic matter (SOM) study: the particle-size fractionation of SOM, and the mid-infrared spectroscopy. These coupled analytical approaches allowed us to quantify C stocks across the study area, and explain the stability and the vulnerability of COS at various angles. Factors responsible for the patterns observed in the different eco-units are discussed. This work also confirmed the relevance of the Rock-Eval tool to achieve our previous objectives. Biological approaches allowed us to assess the significance of microbial pool in these soils. Finally, indices assessing the status of SOM (SOC storage, soil fertility, vulnerability COS) were proposed and constituted interesting management tools for decision-makers.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Variable selection in near infrared spectra for the biological characterization of soil and earthworm casts

    No full text
    International audienceNear infrared reflectance spectroscopy (NIRS) was used to predict six biological properties of soil and earthworm casts including extracellular soil enzymes, microbial carbon, potential nitrification and denitrification. Partial least squares regression (PLSR) models were developed with a selection of the most important near infrared wavelengths. They reached coefficients of determination ranging from 0.81 to 0.91 and ratios of performance-to-deviation above 2.3. Variable selection with the variable importance in the projection (VIP) method increased dramatically the prediction performance of all models with an important contribution from the 1750–2500 nm region. We discuss whether selected wavelengths can be attributed to macronutrient availability or to microbial biomass. Wavelength selection in NIR spectra is recommended for improving PLSR models in soil research

    Safety of hyperbaric oxygen therapy in mechanically ventilated patients

    Get PDF
    Background: To evaluate the epidemiology of patients who require mechanical ventilation during hyperbaric oxygen therapy. Materials and methods: One-hundred-fifty patients who required mechanical ventilation during hyperbaric oxygen therapy were prospectively studied during a 6-year period in a French university hyperbaric centre. We analysed the indication of hyperbaric oxygen therapy, agent used for sedation, presence of a chest tube, need for vasopressor agents and tolerance and appearance of side effects. Finally, we compared the outcomes of patients according to the presence or absence of acute respiratory distress syndrome (ARDS). Results: Eleven children and 139 adult patients were included (n = 150) in the study. In both populations, carbon monoxide poisoning (51%) and iatrogenic gas embolism (33%) were the two main causes of intubation and mechanical ventilation. The combination of midazolam and sufentanil was used in 85 (67%) patients. All of the patients were given a bolus of a neuromuscular blocker during the hyperbaric session, despite the presence of ARDS in 35 patients. Patient-ventilator asynchrony was the most frequent side effect in 6 (5%) patients and was often the consequence of suboptimal sedation. Mortality was higher in the group with ARDS (23%). Conclusions: Carbon monoxide poisoning and iatrogenic gas embolism are the two main diseases of the patients who required mechanical ventilation during hyperbaric oxygen therapy in this study. Mechanical ventilation is a safe method for patients during hyperbaric oxygen therapy. Sedation needs to be perfected to avoid patient-ventilator asynchrony.

    Typologie des formes d’humus forestières (sous climats tempérés)

    Get PDF
    National audienceLe présent chapitre actualise la typologie des formes d'humus forestières dans le cadre du Référentiel Pédologique 2008. Les horizons de référence O et A sont définis sur la base de caractères directement observables sur le terrain, avec une liste de qualificatifs permettant de décrire toutes les variantes possibles des formes d'humus forestières présentes en climat tempéré. Des clés d'identification sont fournies pour les formes d'humus aérées et hydromorphes, ainsi que des tableaux synoptiques

    Fatal interstitial lung disease associated with oral erlotinib therapy for lung cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Erlotinib is a Human Epidermal Growth Factor Receptor Type 1/tyrosine kinase (EGFR) inhibitor which is used for non-small-cell lung cancer treatment. Despite that erlotinib is considered to have a favorable safety profile, adverse events such as interstitial lung disease (ILD) were reported in pivotal studies. The authors report the first histologically confirmed case of fatal ILD associated with erlotinib therapy.</p> <p>Case Presentation</p> <p>The medical record of a patient who developed fatal ILD after receiving erlotinib treatment was reviewed to identify the cause of death and other factors potentially contributive to this adverse outcome. A 55-year-old smoker with no evidence of pre-existing interstitial disease developed bilateral ILD and respiratory failure which could be explained only as a toxicity of erlotinib. He had a history of stage IV left upper lobe squamous-cell carcinoma for which he had received three successive regimens of chemotherapy (ifosfamide plus gemcitabine, docetaxel, mitomycin plus navelbine), followed five months later by erlotinib. At initiation of erlotinib treatment there were no radiological signs suggestive of ILD disease or apparent clinical signs of respiratory distress. While the patient completed two months with erlotinib therapy he developed bilateral interstitial infiltrates; despite discontinuation of erlotinib he was admitted with respiratory failure two weeks later. Diagnostic work up for other causes of pneumonitis including infectious diseases, congestive cardiac failure and pulmonary infraction was negative. Empiric treatment with oxygene, corticosteroids and later with cyclophosphamide was ineffective and the patient progressively deteriorated and died. The clinical and post-mortem examination findings are presented and the possible association relationship between erlotinib induced ILD and previous chemotherapy is discussed.</p> <p>Conclusion</p> <p>Physicians should be alert to the fact that erlotinib related ILD, although infrequent, is potential fatal. The association between selective EGFR-inhibitors and ILD should be further investigated.</p

    Climate change effects on the stability and chemistry of soil organic carbon pools in a subalpine grassland

    Get PDF
    Mountain soils stock large quantities of carbon as particulate organic matter that may be highly vulnerable to climate change. To explore potential shifts in soil organic matter (SOM) form and stability under climate change (warming and reduced precipitations), we studied the dynamics of SOM pools of a mountain grassland in the Swiss Jura as part of a climate manipulation experiment. The climate manipulation (elevational soil transplantation) was set up in October 2009 and simulated two realistic climate change scenarios. After 4 years of manipulation, we performed SOM physical fractionation to extract SOM fractions corresponding to specific turnover rates, in winter and in summer. Soil organic matter fraction chemistry was studied with ultraviolet, 3D fluorescence, and mid-infrared spectroscopies. The most labile SOM fractions showed high intra-annual dynamics (amounts and chemistry) mediated via the seasonal changes of fresh plant debris inputs and confirming their high contribution to the microbial loop. Our climate change manipulation modified the chemical differences between free and intra-aggregate organic matter, suggesting a modification of soil macro-aggregates dynamics. Interestingly, the 4-year climate manipulation affected directly the SOM dynamics, with a decrease in organic C bulk soil content, resulting from significant C-losses in the mineral-associated SOM fraction (MAOM), the most stable form of SOM. This SOC decrease was associated with a decrease in clay content, above- and belowground plants biomass, soil microbial biomass and activity. The combination of these climate changes effects on the plant–soil system could have led to increase C-losses from the MAOM fraction through clay-SOM washing out and DOC leaching in this subalpine grassland

    HIV-1-infected patients from the French National Observatory experiencing virological failure while receiving enfuvirtide

    Get PDF
    Objectives We studied gp41 mutations associated with failing enfuvirtide salvage therapy. Methods This multicentre study involved patients with HIV-1 plasma viral load (pVL) > 5000 copies/mL after at least 3 months of uninterrupted enfuvirtide therapy and with plasma samples available at inclusion (T0), at initial enfuvirtide failure (T1) and at last follow-up visit during continued failing enfuvirtide therapy (T2). The HR-1 and HR-2 domains of the gp41 gene were sequenced at T0, T1 and T2. Results Ninety-nine patients were enrolled. At baseline, the median pVL and CD4 cell count were 5.1 log copies/mL and 72 cells/mm3, respectively. Based on the ANRS Resistance Group algorithm, the proportion of patients harbouring viruses with enfuvirtide resistance mutations increased significantly between T0 and T1. In the HR-1 domain, the V38A/M, Q40H, N42T, N43D and L45M mutations wereselected (P < 0.02). In the HR-2 domain, no mutations were significantly selected during the follow-up. None of the mutations was associated with a CD4 cell count increment. Conclusions Mutations selected during failing enfuvirtide salvage therapy are mainly located in the HR-1 domain of the gp41 gene, between codons 38 and 45. No mutations were associated with an increase in the CD4 cell coun
    corecore