11 research outputs found

    The synthesis and coupling of photoreactive collagen-based peptides to restore integrin reactivity to an inert substrate, chemically-crosslinked collagen.

    Get PDF
    Collagen is frequently advocated as a scaffold for use in regenerative medicine. Increasing the mechanical stability of a collagen scaffold is widely achieved by cross-linking using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS). However, this treatment consumes the carboxylate-containing amino acid sidechains that are crucial for recognition by the cell-surface integrins, abolishing cell adhesion. Here, we restore cell reactivity to a cross-linked type I collagen film by covalently linking synthetic triple-helical peptides (THPs), mimicking the structure of collagen. These THPs are ligands containing an active cell-recognition motif, GFOGER, a high-affinity binding site for the collagen-binding integrins. We end-stapled peptide strands containing GFOGER by coupling a short diglutamate-containing peptide to their N-terminus, improving the thermal stability of the resulting THP. A photoreactive Diazirine group was grafted onto the end-stapled THP to allow covalent linkage to the collagen film upon UV activation. Such GFOGER-derivatized collagen films showed restored affinity for the ligand-binding I domain of integrin α2β1, and increased integrin-dependent cell attachment and spreading of HT1080 and Rugli cell lines, expressing integrins α2β1 and α1β1, respectively. The method we describe has wide application, beyond collagen films or scaffolds, since the photoreactive diazirine will react with many organic carbon skeletons.The work was supported in Department of Biochemistry by New Horizons and Programme grants from British Heart Foundation (NH/11/1/28922 and RG/09/003/27122) and a Biomedical Resource grant from the Wellcome Trust (094470/Z/10/Z). In Department of Materials Science, funding was from the Peoples Programme of the EU 7th Framework Programme (RAE no: PIIFGA-2013-624904, to DVB), a Proof of Concept grant from the EPSRC Medical Technologies IKC, and an ERC Advanced Grant 320598 3D-E (to REC).This is the final version of the article. It first appeared from Elsevier via https://doi.org/10.1016/j.biomaterials.2016.01.04

    MMP-13 binds to platelet receptors αIIbβ3 and GPVI and impairs aggregation and thrombus formation.

    Get PDF
    BACKGROUND: Acute thrombotic syndromes lead to atherosclerotic plaque rupture with subsequent thrombus formation, myocardial infarction and stroke. Following rupture, flowing blood is exposed to plaque components, including collagen, which triggers platelet activation and aggregation. However, plaque rupture releases other components into the surrounding vessel which have the potential to influence platelet function and thrombus formation. OBJECTIVES: Here we sought to elucidate whether matrix metalloproteinase-13 (MMP-13), a collagenolytic metalloproteinase up-regulated in atherothrombotic and inflammatory conditions, affects platelet aggregation and thrombus formation. RESULTS: We demonstrate that MMP-13 is able to bind to platelet receptors alphaIIbbeta3 (αIIbβ3) and platelet glycoprotein (GP)VI. The interactions between MMP-13, GPVI and αIIbβ3 are sufficient to significantly inhibit washed platelet aggregation and decrease thrombus formation on fibrillar collagen. CONCLUSIONS: Our data demonstrate a role for MMP-13 in the inhibition of both platelet aggregation and thrombus formation in whole flowing blood, and may provide new avenues of research into the mechanisms underlying the subtle role of MMP-13 in atherothrombotic pathologies

    Zinc is a transmembrane agonist that induces platelet activation in a tyrosine phosphorylation-dependent manner

    Get PDF
    Following platelet adhesion and primary activation at sites of vascular injury, secondary platelet activation is induced by soluble platelet agonists, such as ADP, ATP, thrombin and thromboxane. Zinc ions are also released from platelets and damaged cells and have been shown to act as a platelet agonist. However, the mechanism of zinc-induced platelet activation is not well understood. Here we show that exogenous zinc gains access to the platelet cytosol and induces full platelet aggregation that is dependent on platelet protein tyrosine phosphorylation, PKC and integrin αIIbβ3 activity and is mediated by granule release and secondary signalling. ZnSO4 increased the binding affinity of GpVI, but not integrin α2β1. Low concentrations of ZnSO4 potentiated platelet aggregation by collagen-related peptide (CRP-XL), thrombin and adrenaline. Chelation of intracellular zinc reduced platelet aggregation induced by a number of different agonists, inhibited zinc-induced tyrosine phosphorylation and inhibited platelet activation in whole blood under physiologically relevant flow conditions. Our data are consistent with a transmembrane signalling role for zinc in platelet activation during thrombus formation

    The effects of inhibition and siRNA knockdown of collagen-binding integrins on human umbilical vein endothelial cell migration and tube formation.

    No full text
    Blood vessels in the body are lined with endothelial cells which have vital roles in numerous physiological and pathological processes. Collagens are major constituents of the extracellular matrix, and many adherent cells express several collagen-binding adhesion receptors. Here, we study the endothelium-collagen interactions mediated by the collagen-binding integrins, α1β1, α2β1, α10β1 and α11β1 expressed in human umbilical vein endothelial cells (HUVECs). Using qPCR, we found expression of the α10 transcript of the chondrocyte integrin, α10β1, along with the more abundant α2, and low-level expression of α1. The α11 transcript was not detected. Inhibition or siRNA knockdown of the α2-subunit resulted in impaired HUVEC adhesion, spreading and migration on collagen-coated surfaces, whereas inhibition or siRNA knockdown of α1 had no effect on these processes. In tube formation assays, inhibition of either α1 or α2 subunits impaired the network complexity, whereas siRNA knockdown of these integrins had no such effect. Knockdown of α10 had no effect on cell spreading, migration or tube formation in these conditions. Overall, our results indicate that the collagen-binding integrins, α1β1 and α2β1 play a central role in endothelial cell motility and self-organisation

    Coupling of a specific photoreactive triple-helical peptide to crosslinked collagen films restores binding and activation of DDR2 and VWF.

    Get PDF
    Collagen-based scaffolds may require chemical crosslinking to achieve mechanical properties suitable for tissue engineering. Carbodiimide treatment, often used for this purpose, consumes amino acid side chains required for receptor recognition, thus reducing cell-collagen interaction. Here, we restore recognition and function of both von Willebrand Factor (VWF) and Discoidin Domain Receptor 2 (DDR2) to crosslinked collagen films by derivatisation with a specific triple-helical peptide (THP), an approach previously applied to integrin-mediated cellular adhesion. The THP contained the collagen III-derived active sequence, GPRGQOGVNleGFO, conjugated to a photoreactive moiety, diazirine, allowing UV-dependent covalent coupling to collagen films. Crosslinking of collagen films attenuated the binding of recombinant VWF A3 domain and of DDR2 (as the GST and Fc fusions, respectively), and coupling of the specific THP restored their attachment. These derivatised films supported activation of DDR2 expressed in either COS-7 or HEK293 cells, reflected by phosphorylation of tyrosine 740, and VWF-mediated platelet deposition from flowing blood was restored. Further, such films were able to increase low-density lipoprotein uptake in vascular endothelial cells, a marker for endothelial phenotype. Thus, covalent linkage of specific THPs to crosslinked collagen films i) restores their cognate protein binding, ii) triggers the corresponding cellular responses, and iii) demonstrates the broad applicability of the approach to a range of receptors for applications in regenerative medicine
    corecore