3,631 research outputs found

    Oscillatory fluid flow drives scaling of contraction wave with system size

    Full text link
    Flows over remarkably long distances are crucial to the functioning of many organisms, across all kingdoms of life. Coordinated flows are fundamental to power deformations, required for migration or development, or to spread resources and signals. A ubiquitous mechanism to generate flows, particularly prominent in animals and amoeba, is acto-myosin cortex driven mechanical deformations that pump the fluid enclosed by the cortex. Yet, it is unclear how cortex dynamics can self-organize to give rise to coordinated flows across the largely varying scales of biological systems. Here, we develop a mechanochemical model of acto-myosin cortex mechanics coupled to a contraction-triggering, soluble chemical. The chemical itself is advected with the flows generated by the cortex driven deformations of the tubular-shaped cell. The theoretical model predicts a dynamic instability giving rise to stable patterns of cortex contraction waves and oscillatory flows. Surprisingly, simulated patterns extend beyond the intrinsic length scale of the dynamic instability - scaling with system size instead. Patterns appear randomly but can be robustly generated in a growing system or by flow-generating boundary conditions. We identify oscillatory flows as the key for the scaling of contraction waves with system size. Our work shows the importance of active flows in biophysical models of patterning, not only as a regulating input or an emergent output, but rather as a full part of a self-organized machinery. Contractions and fluid flows are observed in all kinds of organisms, so this concept is likely to be relevant for a broad class of systems.Comment: 7 pages, 5 figure

    Witnessing single-photon entanglement with local homodyne measurements: analytical bounds and robustness to losses

    Full text link
    Single-photon entanglement is one of the primary resources for quantum networks, including quantum repeater architectures. Such entanglement can be revealed with only local homodyne measurements through the entanglement witness presented in [Morin et al. Phys. Rev. Lett. 110, 130401 (2013)]. Here, we provide an extended analysis of this witness by introducing analytical bounds and by reporting measurements confirming its great robustness with regard to losses. This study highlights the potential of optical hybrid methods, where discrete entanglement is characterized through continuous-variable measurements

    Estimation of plate elastic moduli through vibration testing

    No full text
    International audienceThis paper considers the identification problem for 2D-structures by comparing a modal method with a new method based on the estimation of the dispersion equation in k-space. Both methods are validated by numerical simulation and by measurements based on an acoustic holography experiment

    Bases physiques de la morphogenèse : couplage entre mécanique et croissance des plantes et de la levure

    Get PDF
    The work presented here is the result of three different projects about the coupling of mechanics and growth. The first chapter is a review about mechanics and elongation of walled cells, focused on the computational studies. The second chapter presents some models of the mechanics of development with more technical details. The third chapter is a study of the establishment and stabilization of polarity in fission yeast spores, a phenomenon that relies on a coupling between mechanics, polarity, and growth. The fourth chapter is the computational study of a chemomechanical model of plant phyllotaxis. Patterns of growth hormone are achieved thanks to a feedback with cell mechanics and polar transport. We focused our attention on the question of stress- or strain-sensing, ignored in most other studies of the interaction between biochemistry and mechanics. The fifth chapter is also about a coupling between polarity and mechanics. We investigate how the mechanical stress generated by growth or curvature of the tissues can override the geometrical cues to orient the cell divisions in the shoot apical meristem.Le travail présenté dans ce manuscrit est l'aboutissement de trois différents projets sur le couplage entre la mécanique et la croissance. Le premier chapitre est une revue concernant la mécanique et l'élongation des cellules à parois, où l'accent est placé sur les travaux numériques. Le deuxième chapitre présente quelques modèles de la mécanique du développement avec plus de détails techniques. Le troisième chapitre est une étude de l'établissement et de la stabilisation de la polarité chez les spores de la levure à fission, un phénomène qui repose sur un couplage entre mécanique, polarité, et croissance. Le quatrième chapitre est une étude numérique d'un modèle chimio-mécanique de phyllotaxie chez les plantes. Les motifs d'hormone de croissance sont créés par l'intermédiaire d'une rétro-action entre la mécanique des cellules et le transport polaire de cette hormone. Nous nous sommes demandé si le champ à l'origine de la rétro-action est la déformation ou la contrainte, une question ignorée dans la plupart des travaux sur le couplage entre mécanique et biochimie. Le cinquième chapitre concerne aussi un couplage entre polarité et mécanique. Nous étudions la manière dont la contrainte générée par la croissance ou la courbure des tissus peut se substituer aux indications géométriques qui orientent les divisions cellulaires à l'apex de la tige

    Witnessing trustworthy single-photon entanglement with local homodyne measurements

    Full text link
    Single-photon entangled states, i.e. states describing two optical paths sharing a single photon, constitute the simplest form of entanglement. Yet they provide a valuable resource in quantum information science. Specifically, they lie at the heart of quantum networks, as they can be used for quantum teleportation, swapped and purified with linear optics. The main drawback of such entanglement is the difficulty in measuring it. Here, we present and experimentally test an entanglement witness allowing one not only to say whether a given state is path-entangled but also that entanglement lies in the subspace where the optical paths are each filled with one photon at most, i.e. refers to single-photon entanglement. It uses local homodyning only and relies on no assumption about the Hilbert space dimension of the measured system. Our work provides a simple and trustful method for verifying the proper functioning of future quantum networks.Comment: published versio

    Alteration of size perception: serotonin has opposite effects on the aggressiveness of crayfish confronting either a smaller or a larger rival

    Get PDF
    International audienceWe injected serotonin (5-HT) into adult male crayfish before pairing them with size-matched non-injected competitors, and observed dyadic agonistic interactions. Paradoxically, 5-HT elicited opposite behavioral responses if the injected animal was opposed by a smaller or larger rival: the level of aggressiveness of the injected crayfish was higher when facing a larger rival but lower when facing a smaller rival. Our results indicate that the effects of 5-HT on aggressiveness are dependent on the perception of the relative size difference of the opponent. In both cases, however, 5-HT significantly delayed the decision to retreat. We conclude that 5-HT does not primarily act on aggressiveness but rather on the brain centers that integrate risk assessment and/or decision making, which then modulate the aggressive response. Our findings support a reinterpretation of the role of 5-HT in crustacean agonistic behavior that may be of interest for studies of other animals

    Flow driven control of pulse width in excitable media

    Full text link
    Models of pulse formation in nerve conduction have provided manifold insight not only into neuronal dynamics but also the non-linear dynamics of pulse formation in general. Recent observation of neuronal electro-chemical pulses also driving mechanical deformation of the tubular neuronal wall and thereby generating ensuing cytoplasmic flow now question the impact of flow on the electro-chemical dynamics of pulse formation. We, here, theoretically investigate the classical Fitzhugh-Nagumo model now accounting for advective coupling between the pulse propagator typically describing membrane potential and here triggering mechanical deformations and, thus, governing flow magnitude, and the pulse controller, a chemical species advected with the ensuing fluid flow. Employing analytical calculations and numerical simulations we find, that advective coupling allows for a linear control of pulse width while leaving pulse velocity unchanged. We therefore uncover an independent control of pulse width by fluid flow coupling.Comment: 9 pages, 4 figure

    Seismic imaging in laboratory trough laser Doppler vibrometry

    No full text
    International audienceMimic near-surface seismic field measurements at a small scale, in the laboratory, under a well-controlled environment , may lead to a better understanding of wave propagation in complex media such as in geological materials. Laboratory experiments can help in particular to constrain and refine theoretical and numerical modelling of physical phenomena occurring during seismic propagation, in order to make a better use of the complete set of measurements recorded in the field. We have developed a laser Doppler vibrometer (laser interferometry) platform designed to measure non-contact seismic displacements (or velocities) of a surface. This technology enables to measure displacements as small as a tenth of a nanometer on a wide range of frequencies, from a few tenths to a few megahertz. Our experimental setup is particularly suited to provide high-density spatial and temporal records of displacements on the edge of any vibrating material. We will show in particular a study of MHz wave propagation (excited by piezoelectric transducers) in cylindrical cores of typical diameter size around 10 cm. The laser vibrometer measurements will be first validated in homogeneous materials cylinders by comparing the measurements to a direct numerical simulation. Special attention will be given to the comparison of experimental versus numerical amplitudes of displacements. In a second step, we will conduct the same type of study through heterogeneous carbonate cores, possibly fractured. Tomographic images of velocity in 2D slices of the carbonate core will be derived based upon on the time of first arrival. Preliminary attempts of tomographic attenuation maps will also be presented based on the amplitudes of first arrivals. Experimental records will be confronted to direct numerical simulations and tomographic images will be compared to x-ray scanner imaging of the cylindrical cores
    corecore