87 research outputs found

    Edge effect causes apparent fractal correlation dimension of uniform spatial raindrop distribution

    Get PDF
    Lovejoy and Schertzer (1990a) presented a statistical analysis of blotting paper observations of the (twodimensional) spatial distribution of raindrop stains. They found empirical evidence for the fractal scaling behavior of raindrops in space, with potentially far-reaching implications for rainfall microphysics and radar meteorology. In particular, the fractal correlation dimensions determined from their blotting paper observations led them to conclude that “drops are (hierarchically) clustered” and that “inhomogeneity in rain is likely to extend down to millimeter scales”. Confirming previously reported Monte Carlo simulations, we demonstrate analytically that the claims based on this analysis need to be reconsidered, as fractal correlation dimensions similar to the ones reported (i.e. smaller than the value of two expected for uniformly distributed raindrops) can result from instrumental artifacts (edge effects) in otherwise homogeneous Poissonian rainfall. Hence, the results of the blotting paper experiment are not statistically significant enough to reject the Poisson homogeneity hypothesis in favor of a fractal description of the discrete nature of rainfall. Our analysis is based on an analytical expression for the expected overlap area between a circle and a square, when the circle center is randomly (uniformly) distributed inside the square. The derived expression ( r2−8r3/3+r4/2, where r denotes the ratio between the circle radius and the side of the square) can be used as a reference curve against which to test the statistical significance of fractal correlation dimensions determined from spatial point patterns, such as those of raindrops and rainfall cells.Postprint (published version

    Gestion optimale d'un réservoir hydraulique multiusages et changement climatique. Modèles, projections et incertitudes (Application à la réserve de Serre-Ponçon)

    Get PDF
    Pouvoir évaluer l'impact du changement climatique sur la ressource en eau, et les systèmes de gestion qui lui sont associés, est une préoccupation majeure de nos sociétés. Une telle évaluation nécessite la mise en place d'une chaîne de simulation qui permet, sur la base d'expériences climatiques futures, i) d'estimer à l'échelle régionale l'évolution possible de la ressource et de sa variabilité, ii) de simuler le comportement des systèmes utilisés pour leur gestion pour iii) estimer les éventuelles modifications de performance. Cette thèse vise à tester la possibilité de mettre en place une chaîne de simulation de ce type pour un système de gestion réel et à identifier quelles sont les composantes à considérer dans ce cas. Pour ce faire, nous chercherons en particulier à apporter des éléments de réponse aux questions suivantes: - Quelles représentations peut-on faire d'un système de gestion opérationnel pour une application en climat modifié ? - Quels éléments d'évaluation peuvent permettre d'estimer l'impact du changement climatique sur ce système de gestion ? - Quelles sont les sources d'incertitudes influençant cette évaluation ? Quelles sont les contributions relatives à l'incertitude totale des différentes méthodes et modèles utilisés ? Nous considérerons plus précisément le système de gestion du barrage de Serre-Ponçon, alimenté par le haut bassin versant de la Durance. Ce barrage, géré par EDF, est l'un des plus grands barrages artificiels européens. Il est multi-usages (irrigation, soutien d'étiage, production d'hydroélectricité, tourisme). Dans un premier temps, nous présenterons le contexte du système de gestion actuel. Nous mettrons ensuite en place un modèle de gestion du barrage visant à reproduire de façon réaliste du point de vue du gestionnaire actuel (EDF), mais simplifiée pour pouvoir être appliqué sous scénarios futurs - la gestion actuelle du barrage. Nous développerons pour cela i) des modèles permettant d'estimer les différentes demandes en eau et ii) un modèle d'optimisation de la gestion sous contraintes. Ce modèle permettra de simuler la gestion du système au pas de temps journalier sur plusieurs décennies du climat récent, ou de climats futurs modifiés. Nous proposerons ensuite un ensemble d'indicateurs qui permettent de fournir une estimation de la performance d'un tel système à partir des sorties du modèle de gestion obtenues par simulation pour différentes périodes de 30 ans. Nous explorerons la façon dont la performance estimée dépend du modèle choisi pour la représentation du système de gestion actuel, et plus précisément de la façon dont la stratégie utilisée pour l'optimisation de la gestion est élaborée. A ce titre, nous proposerons trois modèles de gestion basés sur trois types de stratégies, obtenues pour des degrés différents de prévisibilité des apports et sollicitations futurs à la retenue. Pour ces simulations, les modèles d'impacts nécessitent des scénarios de forçages météorologiques à l'échelle de bassin versant (e.g. modèle hydrologique, modèle d'usages de l'eau, modèle de gestion de la ressource). Ces scénarios peuvent être obtenus par des méthodes de descente d'échelle statistique (MDES), sur la base des simulations grande échelle des modèles climatiques globaux. Enfin, nous évaluerons les incertitudes liées aux deux types de modèles et estimerons leurs contributions relatives à l'incertitude globale. Nous utiliserons pour cela les scénarios issus de différentes chaines de simulation GCM/MDES produits sur la période 1860-2011 dans le cadre du projet RIWER2030. Nous montrerons que ces deux sources d'incertitudes sont du même ordre de grandeur sur l'estimation des modifications de performance.Assess the impact of climate change on water resources and management systems associated, is a major concern of our society. This requires the establishment of a simulation chain which allows, on the basis of future climate experiments i) to estimate the possible changes in regional resource and its variability, ii) to simulate the behavior of the systems used to manage them in order to iii) estimate the possible changes in performance. This thesis aims to test the feasibility of establishing a chain simulation of such a management system to identify what are the real components to consider in this case. To do this, we have to provide answers to the following questions: - How can we represent an operational management system in a climate change context? - What elements of evaluation can be used to estimate the impact of climate change on the management system? - What are the sources of uncertainty influencing this assessment? What are the relative contributions to the total uncertainty of these different methods and models used? We consider the system of management of the reservoir of Serre-Ponçon, built on the high basin of the Durance. This dam, operated by EDF, is one of the largest artificial dams Europe. It is multi-purpose (irrigation, low-flow support, hydropower, tourism). As a first step, we will present the context of the current management system. Then, we will establish a management model to reproduce - in a realistic way from the point of view of the current manager (EDF), but simplified to be applied in future scenarios - the current management of the Serre-Ponçon reserve. We will develop for this, i) different models to estimate different water demands and ii) an optimization model with constraints management. This model will simulate the management system in daily time step on several decades of recent climate or future climate change. We then propose a set of indicators to provide an estimate of the performance of such a system from the outputs of the management model obtained by simulation for different periods of 30 years. We will explore how the estimated performance depends on the model chosen to represent the current management system, and more specifically how the strategy used to optimize the management is developed. To this end, we will propose three management models based on three types of strategies, obtained for different degrees of predictability of future inflows and constraints. For these simulations, the impact models require meteorological forcing scenarios at watershed scale (eg hydrological model, model of water use model of resource management). These scenarios can be obtained by statistical downscaling methods (SDM), on the basis of large-scale simulations of global climate models. Finally, we will evaluate the uncertainties associated with the two types of models and will estimate their relative contributions to the overall uncertainty. We have used this scenario from different GCM/SDM simulations over the period 1860-2100 obtained within the RIWER2030 project. We show that these two sources of uncertainty are of the same order of magnitude estimate of changes in performance.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Effects of Increased Wind Power Generation on Mid-Norway’s Energy Balance under Climate Change: A Market Based Approach

    Get PDF
    Thanks to its huge water storage capacity, Norway has an excess of energy generation at annual scale, although significant regional disparity exists. On average, the Mid-Norway region has an energy deficit and needs to import more electricity than it exports. We show that this energy deficit can be reduced with an increase in wind generation and transmission line capacity, even in future climate scenarios where both mean annual temperature and precipitation are changed. For the considered scenarios, the deficit observed in winter disappears, i.e., when electricity consumption and prices are high. At the annual scale, the deficit behaviour depends more on future changes in precipitation. Another consequence of changes in wind production and transmission capacity is the modification of electricity exchanges with neighbouring regions which are also modified both in terms of average, variability and seasonality

    Social and Hydrological Responses to Extreme Precipitations: An Interdisciplinary Strategy for Postflood Investigation

    Get PDF
    International audienceThis paper describes and illustrates a methodology to conduct postflood investigations based on interdisciplinary collaboration between social and physical scientists. The method, designed to explore the link between crisis behavioral response and hydrometeorological dynamics, aims at understanding the spatial and temporal capacities and constraints on human behaviors in fast-evolving hydrometeorological conditions. It builds on methods coming from both geosciences and transportations studies to complement existing post-flood field investigation methodology used by hydrometeorologists. The authors propose an interview framework, structured around a chronological guideline to allow people who experienced the flood firsthand to tell the stories of the circumstances in which their activities were affected during the flash flood. This paper applies the data collection method to the case of the 15 June 2010 flash flood event that killed 26 people in the Draguignan area (Var, France). As a first step, based on the collected narratives, an abductive approach allowed the identification of the possible factors influencing individual responses to flash floods. As a second step, behavioral responses were classified into categories of activities based on the respondents' narratives. Then, aspatial and temporal analysis of the sequences made of the categories of action to contextualize the set of coping responses with respect to local hydrometeorological conditions is proposed. During this event, the respondents mostly follow the pace of change in their local environmental conditions as the flash flood occurs, official flood anticipation being rather limited and based on a large-scale weather watch. Therefore, contextual factors appear as strongly influencing the individual's ability to cope with the event in such a situation

    Validation et étalonnage d'images de télédétection à l'aide de mesures ponctuelles selon une approche géostatique : application à la mesure des précipitations et de l'insolation

    No full text
    Comment utiliser de manière quantitative l'information fournie par un dispositif de télédétection météorologique afin d'améliorer la mesure conventionnelle donnée par les réseaux de stations au sol ? Pour répondre à cette question, importante d'un point de vue pratique, ce mémoire propose une approche géostatistique permettant, d'une part, de vérifier la qualité des mesures obtenues par chaque dispositif, et d'autre part de combiner les mesures sol aux images de télédétection. Des exemples d'application concernant la mesure des précipitations et de l'insolation sont analysés afin d'illustrer la méthodologie proposée en la comparant à des approches plus traditionnelles. La définition d'un protocole de validation s'appuie sur des rappels de géostatistique classique (Chapitre 1). Ce protocole fixe des valeurs de référence permettant de vérifier les résultats obtenus par un dispositif de mesure d'après différents critères statistiques d'erreur (Chapitre Il). Le système de cokrigeage est décrit en terme de méthode d'étalonnage capable de combiner des mesures ponctuelles et de télédétection (Chapitre IV). Différentes simplifications de cette méthode sont détaillées et rapprochées des méthodes classiques d'étalonnage (Chapitre VII). Les données utilisées pour mettre en oeuvre ces méthodes de validation et d'étalonnage (Chapitres III, V et VII) sont des mesures de précipitations en région tempérée (radar et pluviomètres dans le Bassin Parisien) ou semi-aride (satellites et pluviomètres en Arabie) et des mesures d'insolation en région tempérée (satellite et héliographes en France).pas de résum

    Co-occurrence of extreme daily rainfall in the French Mediterranean region

    No full text
    International audienceWe propose in this article a statistical framework to study local disparities in the co‐occurrence of extreme rainfall in the French Mediterranean region. We employ a region‐of‐influence approach by studying the likelihood of the 3% largest daily rainfall to occur simultaneously at less than 50 km distance, when moving across the region. Our model uses an anisotropic max‐stable process allowing us to properly represent the co‐occurrence of daily extremes and including the possibility of a preferred direction of co‐occurrence. We use this framework on a dense network composed of almost 900 daily stations spread over a 100,000 km2 region of southern France under a Mediterranean influence, with data back to 1948. This density allows us to study the spatial patterns in the co‐occurrence of extreme rainfall at fine scale and by so to characterize the main precipitation systems leading to extremes in the region. We show in particular that concomitant extremes are the most likely along the crest line of the Massif Central, which is also the area where the magnitude of extremes is among the largest. This may be of concern for flood risk management

    Instrumental agreement and retrospective analysis of trends in precipitation extremes in the French Mediterranean Region

    No full text
    International audienceIn this letter we show the emergence of an agreement between the instruments of a rain-gauge network to point toward a positive trend in daily precipitation extremes since 1960 in the French Mediterranean Region. We identify for each gauge the time varying parameters of the generalized extreme value distribution of annual maximum precipitation over incremental time-windows. These distributions provide for each station of the network a trend assessment over a chosen period that can be interpreted for instance as a trend of the mean or as the trend of a chosen quantile. The incremental window, i.e. a window containing the series of data available at a given date, mimics the annual assessment of the trends that could have been made through time. Each year we thus have one trend per gauge that we can look in distribution through the network in order to assess the level of consensus among instruments. We show how the increasing size of the datasets used over a period of possible climate non-stationarity progressively leads from a dissensus anarchically pointing to no trend (before the 2000s) to a consensus where a majority of gauges points toward a positive trend (after the 2000s). The detected trend in this Mediterranean Region is quite substantial. For instance the 20 year return period precipitation in 1960 turns out to become a 8 year return period precipitation in 2020. Using a simulation basis we try to characterize the effect of decadal variability that is quite readable in the consensus evolution. The proposed metrics is thought to be a good candidate for the assessment of the local time and rate of emergence of climate change that has important implications in regards to adaptation of human and natural systems
    corecore