10 research outputs found

    Telemedicine platform for health assessment remotely by an integrated nanoarchitectonics FePS3/rGO and Ti3C2-based wearable device

    Get PDF
    Due to the emergence of various new infectious (viral/bacteria) diseases, the remote surveillance of infected persons has become most important, especially if hospitals need to isolate infected patients to prevent the spreading of pathogens to health care personnel. Therefore, we develop a remote health monitoring system by integrating a stretchable asymmetric supercapacitor (SASC) as a portable power source with sensors that can monitor the human physical health condition in real-time and remotely. An abnormal body temperature and breathing rate could indicate a person's sickness/infection status. Here we integrated FePS3@graphene-based strain sensor and SASC into an all-in-one textile system and wrapped it around the abdomen to continuously monitor the breathing cycle of the person. The real body temperature was recorded by integrating the temperature sensor with the SASC. The proposed system recorded physiological parameters in real-time and when monitored remotely could be employed as a screening tool for monitoring pathogen infection status.Web of Science61art. no. 7

    Black phosphorous-based human-machine communication interface

    Get PDF
    Assistive technology involving auditory feedback is generally utilized by those who are visually impaired or have speech and language difficulties. Therefore, here we concentrate on an auditory human-machine interface that uses audio as a platform for conveying information between visually or speech-disabled users and society. We develop a piezoresistive tactile sensor based on a black phosphorous and polyaniline (BP@PANI) composite by the facile chemical oxidative polymerization of aniline on cotton fabric. Taking advantage of BP’s puckered honeycomb lattice structure and superior electrical properties as well as the vast wavy fabric surface, this BP@PANI-based tactile sensor exhibits excellent sensitivity, low-pressure sensitivity, reasonable response time, and good cycle stability. For a real-world application, a prototype device employs six BP@PANI tactile sensors that correspond to braille characters and can convert pressed text into audio on reading or typing to assist visually or speech-disabled persons. Overall, this research offers promising insight into the material candidates and strategies for the development of auditory feedback devices based on layered and 2D materials for human-machine interfaces.Web of Science14

    Thermal insulating walls based on Ti3C2TX as energy storage panels for future smart house

    No full text
    Sustainable decentralized energy generation and storage in the cities are critical for a sustainable future. Here we design a smart energy storage device based on thermal insulation and MXene (Ti3C2Tx) for powered future smart homes. The modified surface of a common thermal insulation wall (TIW) using Ti3C2Tx and polyaniline (PANI) by in situ chemical oxidative polymerization of aniline monomer serves as an energy storage device in the wall and, at the same time, maintains the temperature inside the house. The as-fabricated PANI@Ti3C2Tx-TIW-based supercapacitor exhibited high specific capacitance with outstanding rate capability, cyclic stability, mechanical stability, and power density, and functions in extreme temperatures (-15 degrees C to 45 degrees C). Further, the device was integrated into real rock mineral wool insulation to develop a future house energy storage system that can store electricity in the house wall and supply power to operate emergency evacuation and alert devices in the event of a disaster.Web of Science454art. no. 14011

    Hybrid AgNP–TiO2 thin film based photoanode for dye sensitized solar cell

    Get PDF
    This article addresses two major issues in the plasmonic dye solar cell; (i) protection of plasmonic nanoparticles from electrolyte attack and (ii) design of appropriate molecular dye to harvest photon near the plasmonic resonance. This report reveals the synthesis of D-π-A carbazole dye and incorporation of plasmonic Ag nanoparticles (AgNPs) into TiO2 film using Ag–TiO2 gel. We have designed and synthesized an efficient D-π-A carbazole dye molecule whose absorption maxima matches the plasmonic resonance of AgNPs leading to augmented near field effect, enhancing photon harvesting property of dye molecule. This article also describes a strategy to incorporate AgNPs into the TiO2 photoelectrode by Ag–TiO2 gel. The plasmonic photoanode was characterized using SEM and optical spectroscopy. Dye solar cells were characterized by J–V characteristics and electrochemical impedance technique in order to take insight into photovoltaic performance and electron transfer kinetic. This engineered DSSC achieves 45% enhancement in current due to the plasmon enhanced near field effect at thin film (3 μm)

    Anisotropic One-Dimensional Aqueous Polymer Gel Electrolyte for Photoelectrochemical Devices: Improvement in Hydrophobic TiO<sub>2</sub>–Dye/Electrolyte Interface

    No full text
    Aqueous photoelectrochemical devices have emerged recently as promising area because of their economic and ecological friendliness. In the present work, we have expedited surface active amphiphilic quasi-solid aqueous polymer gel electrolyte (PGE) with hydrophobic sensitizer SK3 in water-based dye sensitized solar cell (DSSC). PGE was prepared from amphiphilic block copolymer (PEO)–(PPO)–(PEO) with iodide–triiodide couple in pure aqueous media without any organic solvent. This block copolymer, with iodide-triiodide salt exhibits 1D-lamellar microcrystalline phase which shows stability in the temperature range of 25–50 °C. Parallel (||<sup>al</sup>) and perpendicular (⊥<sup>ar</sup>) alignment of anisotropic lamellar microcrystalline phase pertaining by PGE were characterized and applied in quasi-solid DSSC. Temperature dependency of ionic conductivity, triiodide diffusion, differential scanning calorimetry, viscosity, and 1-D lamellar anisotropic behavior were studied. Surface active effect of PGE at the hydrophobic dye sensitized photoanode was investigated and compared with liquid water based electrolyte. Because of the amphiphilic nature and thermoreversible sol–gel transition of PGE at a lower temperature (0 to −2 °C) allowing PGE to penetrate efficiently inside the hydrophobic surface of dye–TiO<sub>2</sub> and resulted in a fused contact between dye–TiO<sub>2</sub>/PGE interface. This aqueous PGE successfully enhances the performance of DSSCs over liquid water based devices by improving their <i>V</i><sub>oc</sub> and stability. Under 0.5 sun illumination, DSSC with 1-D lamellar perpendicularly align PGE shows an efficiency of 2.8% and stability up to 1000 h at 50 °C
    corecore