19 research outputs found

    A Sub-Exponential FPT Algorithm and a Polynomial Kernel for Minimum Directed Bisection on Semicomplete Digraphs

    Get PDF
    Given an n-vertex digraph D and a non-negative integer k, the Minimum Directed Bisection problem asks if the vertices of D can be partitioned into two parts, say L and R, such that |L| and |R| differ by at most 1 and the number of arcs from R to L is at most k. This problem, in general, is W-hard as it is known to be NP-hard even when k=0. We investigate the parameterized complexity of this problem on semicomplete digraphs. We show that Minimum Directed Bisection on semicomplete digraphs is one of a handful of problems that admit sub-exponential time fixed-parameter tractable algorithms. That is, we show that the problem admits a 2^{O(sqrt{k} log k)}n^{O(1)} time algorithm on semicomplete digraphs. We also show that Minimum Directed Bisection admits a polynomial kernel on semicomplete digraphs. To design the kernel, we use (n,k,k^2)-splitters. To the best of our knowledge, this is the first time such pseudorandom objects have been used in the design of kernels. We believe that the framework of designing kernels using splitters could be applied to more problems that admit sub-exponential time algorithms via chromatic coding. To complement the above mentioned results, we prove that Minimum Directed Bisection is NP-hard on semicomplete digraphs, but polynomial time solvable on tournaments

    Parameterized Complexity Classification of Deletion to List Matrix-Partition for Low-Order Matrices

    Get PDF
    Given a symmetric l x l matrix M=(m_{i,j}) with entries in {0,1,*}, a graph G and a function L : V(G) - > 2^{[l]} (where [l] = {1,2,...,l}), a list M-partition of G with respect to L is a partition of V(G) into l parts, say, V_1, V_2, ..., V_l such that for each i,j in {1,2,...,l}, (i) if m_{i,j}=0 then for any u in V_i and v in V_j, uv not in E(G), (ii) if m_{i,j}=1 then for any (distinct) u in V_i and v in V_j, uv in E(G), (iii) for each v in V(G), if v in V_i then i in L(v). We consider the Deletion to List M-Partition problem that takes as input a graph G, a list function L:V(G) - > 2^[l] and a positive integer k. The aim is to determine whether there is a k-sized set S subseteq V(G) such that G-S has a list M-partition. Many important problems like Vertex Cover, Odd Cycle Transversal, Split Vertex Deletion, Multiway Cut and Deletion to List Homomorphism are special cases of the Deletion to List M-Partition problem. In this paper, we provide a classification of the parameterized complexity of Deletion to List M-Partition, parameterized by k, (a) when M is of order at most 3, and (b) when M is of order 4 with all diagonal entries belonging to {0,1}

    A Polynomial Kernel for Bipartite Permutation Vertex Deletion

    Get PDF
    In a permutation graph, vertices represent the elements of a permutation, and edges represent pairs of elements that are reversed by the permutation. In the Permutation Vertex Deletion problem, given an undirected graph G and an integer k, the objective is to test whether there exists a vertex subset S ? V(G) such that |S| ? k and G-S is a permutation graph. The parameterized complexity of Permutation Vertex Deletion is a well-known open problem. Bo?yk et al. [IPEC 2020] initiated a study towards this problem by requiring that G-S be a bipartite permutation graph (a permutation graph that is bipartite). They called this the Bipartite Permutation Vertex Deletion (BPVD) problem. They showed that the problem admits a factor 9-approximation algorithm as well as a fixed parameter tractable (FPT) algorithm running in time ?(9^k |V(G)|?). And they posed the question {whether BPVD admits a polynomial kernel.} We resolve this question in the affirmative by designing a polynomial kernel for BPVD. In particular, we obtain the following: Given an instance (G,k) of BPVD, in polynomial time we obtain an equivalent instance (G\u27,k\u27) of BPVD such that k\u27 ? k, and |V(G\u27)|+|E(G\u27)| ? k^{?(1)}

    Further Exploiting c-Closure for FPT Algorithms and Kernels for Domination Problems

    Get PDF
    For a positive integer c, a graph G is said to be c-closed if every pair of non-adjacent vertices in G have at most c-1 neighbours in common. The closure of a graph G, denoted by cl(G), is the least positive integer c for which G is c-closed. The class of c-closed graphs was introduced by Fox et al. [ICALP `18 and SICOMP `20]. Koana et al. [ESA `20] started the study of using cl(G) as an additional structural parameter to design kernels for problems that are W-hard under standard parameterizations. In particular, they studied problems such as Independent Set, Induced Matching, Irredundant Set and (Threshold) Dominating Set, and showed that each of these problems admits a polynomial kernel, either w.r.t. the parameter k+c or w.r.t. the parameter k for each fixed value of c. Here, k is the solution size and c = cl(G). The work of Koana et al. left several questions open, one of which was whether the Perfect Code problem admits a fixed-parameter tractable (FPT) algorithm and a polynomial kernel on c-closed graphs. In this paper, among other results, we answer this question in the affirmative. Inspired by the FPT algorithm for Perfect Code, we further explore two more domination problems on the graphs of bounded closure. The other problems that we study are Connected Dominating Set and Partial Dominating Set. We show that Perfect Code and Connected Dominating Set are fixed-parameter tractable w.r.t. the parameter k+cl(G), whereas Partial Dominating Set, parameterized by k is W[1]-hard even when cl(G) = 2. We also show that for each fixed c, Perfect Code admits a polynomial kernel on the class of c-closed graphs. And we observe that Connected Dominating Set has no polynomial kernel even on 2-closed graphs, unless NP ? co-NP/poly

    Connecting the Dots (with Minimum Crossings)

    Get PDF
    We study a prototype Crossing Minimization problem, defined as follows. Let F be an infinite family of (possibly vertex-labeled) graphs. Then, given a set P of (possibly labeled) n points in the Euclidean plane, a collection L subseteq Lines(P)={l: l is a line segment with both endpoints in P}, and a non-negative integer k, decide if there is a subcollection L\u27subseteq L such that the graph G=(P,L\u27) is isomorphic to a graph in F and L\u27 has at most k crossings. By G=(P,L\u27), we refer to the graph on vertex set P, where two vertices are adjacent if and only if there is a line segment that connects them in L\u27. Intuitively, in Crossing Minimization, we have a set of locations of interest, and we want to build/draw/exhibit connections between them (where L indicates where it is feasible to have these connections) so that we obtain a structure in F. Natural choices for F are the collections of perfect matchings, Hamiltonian paths, and graphs that contain an (s,t)-path (a path whose endpoints are labeled). While the objective of seeking a solution with few crossings is of interest from a theoretical point of view, it is also well motivated by a wide range of practical considerations. For example, links/roads (such as highways) may be cheaper to build and faster to traverse, and signals/moving objects would collide/interrupt each other less often. Further, graphs with fewer crossings are preferred for graphic user interfaces. As a starting point for a systematic study, we consider a special case of Crossing Minimization. Already for this case, we obtain NP-hardness and W[1]-hardness results, and ETH-based lower bounds. Specifically, suppose that the input also contains a collection D of d non-crossing line segments such that each point in P belongs to exactly one line in D, and L does not contain line segments between points on the same line in D. Clearly, Crossing Minimization is the case where d=n - then, P is in general position. The case of d=2 is of interest not only because it is the most restricted non-trivial case, but also since it corresponds to a class of graphs that has been well studied - specifically, it is Crossing Minimization where G=(P,L) is a (bipartite) graph with a so called two-layer drawing. For d=2, we consider three basic choices of F. For perfect matchings, we show (i) NP-hardness with an ETH-based lower bound, (ii) solvability in subexponential parameterized time, and (iii) existence of an O(k^2)-vertex kernel. Second, for Hamiltonian paths, we show (i) solvability in subexponential parameterized time, and (ii) existence of an O(k^2)-vertex kernel. Lastly, for graphs that contain an (s,t)-path, we show (i) NP-hardness and W[1]-hardness, and (ii) membership in XP

    Connecting the dots (with minimum crossings)

    Get PDF
    We study a prototype Crossing Minimization problem, defined as follows. Let F be an infinite family of (possibly vertex-labeled) graphs. Then, given a set P of (possibly labeled) n points in the Euclidean plane, a collection L subseteq Lines(P)={l: l is a line segment with both endpoints in P}, and a non-negative integer k, decide if there is a subcollection L'subseteq L such that the graph G=(P,L') is isomorphic to a graph in F and L' has at most k crossings. By G=(P,L'), we refer to the graph on vertex set P, where two vertices are adjacent if and only if there is a line segment that connects them in L'. Intuitively, in Crossing Minimization, we have a set of locations of interest, and we want to build/draw/exhibit connections between them (where L indicates where it is feasible to have these connections) so that we obtain a structure in F. Natural choices for F are the collections of perfect matchings, Hamiltonian paths, and graphs that contain an (s,t)-path (a path whose endpoints are labeled). While the objective of seeking a solution with few crossings is of interest from a theoretical point of view, it is also well motivated by a wide range of practical considerations. For example, links/roads (such as highways) may be cheaper to build and faster to traverse, and signals/moving objects would collide/interrupt each other less often. Further, graphs with fewer crossings are preferred for graphic user interfaces. As a starting point for a systematic study, we consider a special case of Crossing Minimization. Already for this case, we obtain NP-hardness and W[1]-hardness results, and ETH-based lower bounds. Specifically, suppose that the input also contains a collection D of d non-crossing line segments such that each point in P belongs to exactly one line in D, and L does not contain line segments between points on the same line in D. Clearly, Crossing Minimization is the case where d=n - then, P is in general position. The case of d=2 is of interest not only because it is the most restricted non-trivial case, but also since it corresponds to a class of graphs that has been well studied - specifically, it is Crossing Minimization where G=(P,L) is a (bipartite) graph with a so called two-layer drawing. For d=2, we consider three basic choices of F. For perfect matchings, we show (i) NP-hardness with an ETH-based lower bound, (ii) solvability in subexponential parameterized time, and (iii) existence of an O(k^2)-vertex kernel. Second, for Hamiltonian paths, we show (i) solvability in subexponential parameterized time, and (ii) existence of an O(k^2)-vertex kernel. Lastly, for graphs that contain an (s,t)-path, we show (i) NP-hardness and W[1]-hardness, and (ii) membership in XP

    Flip & Pair – a strategy to augment a blended course with active-learning components: effects on engagement and learning

    Get PDF
    Blended learning technique has adapted many new digitized tools to facilitate students with flexible and self-phased learning opportunities. The flipped classroom strategy, one of the blended learning models has been limited by low engagement of students in the online component. In the present study, we augment a Flip and Pair (F&P), an active-learning strategy into the blended learning course. Following the AB type single group quasi-experimental design, we evaluated the effects of F&P strategy on the student’s engagement and learning while orchestrating it for an undergraduate engineering physics course. Our results highlighted that there is a positive correlation between the engagement (computed based on learning logs of TEEL (Technology-enhanced and Evidence-based Education and Learning) platform in the F&P activities with that of the performance score (knowledge quizzes and final exam). F&P strategy had a better contribution compared to Flip and Traditional Teaching (F&TT) strategy with respect to both engagement and performance. Also, students exhibited a positive perception of learning and engagement. Based on our findings, we identified the key instructional measures that an instructor can follow to increase student engagement while using the F&P strategy

    Fair Division of a Graph into Compact Bundles

    Full text link
    We study the computational complexity of fair division of indivisible items in an enriched model: there is an underlying graph on the set of items. And we have to allocate the items (i.e., the vertices of the graph) to a set of agents in such a way that (a) the allocation is fair (for appropriate notions of fairness) and (b) each agent receives a bundle of items (i.e., a subset of vertices) that induces a subgraph with a specific "nice structure." This model has previously been studied in the literature with the nice structure being a connected subgraph. In this paper, we propose an alternative for connectivity in fair division. We introduce what we call compact graphs, and look for fair allocations in which each agent receives a compact bundle of items. Through compactness, we try to capture the idea that every agent must receive a set of "closely related" items. We prove a host of hardness and tractability results for restricted input settings with respect to fairness concepts such as proportionality, envy-freeness and maximin share guarantee.Comment: This is the full version of a paper accepted to IJCAI 202
    corecore