Connecting the Dots (with Minimum Crossings)

Akanksha Agrawal
Ben-Gurion University, Beer-Sheva, Israel
agrawal@post.bgu.ac.il

Grzegorz Guspiel

Theoretical Computer Science Department, Faculty of Mathematics and Computer Science,
Jagiellonian University, Krakéw, Poland

guspiel@tcs.uj.edu.pl

Jayakrishnan Madathil
The Institute of Mathematical Sciences, HBNI, Chennai, India
jayakrishnanm@imsc.res.in

Saket Saurabh

The Institute of Mathematical Sciences, HBNI, Chennai, India
University of Bergen, Bergen, Norway

saket@imsc.res.in

Meirav Zehavi
Ben-Gurion University, Beer-Sheva, Israel
meiravze@bgu.ac.il

—— Abstract

We study a prototype CROSSING MINIMIZATION problem, defined as follows. Let F be an infinite
family of (possibly vertex-labeled) graphs. Then, given a set P of (possibly labeled) n points in
the Euclidean plane, a collection L C Lines(P) = {¢ : £ is a line segment with both endpoints in
P}, and a non-negative integer k, decide if there is a subcollection L' C L such that the graph
G = (P, L") is isomorphic to a graph in F and L’ has at most k crossings. By G = (P, L), we refer
to the graph on vertex set P, where two vertices are adjacent if and only if there is a line segment
that connects them in L’. Intuitively, in CROSSING MINIMIZATION, we have a set of locations of
interest, and we want to build/draw/exhibit connections between them (where L indicates where it
is feasible to have these connections) so that we obtain a structure in F. Natural choices for F are
the collections of perfect matchings, Hamiltonian paths, and graphs that contain an (s, t)-path (a
path whose endpoints are labeled). While the objective of seeking a solution with few crossings is
of interest from a theoretical point of view, it is also well motivated by a wide range of practical
considerations. For example, links/roads (such as highways) may be cheaper to build and faster to
traverse, and signals/moving objects would collide/interrupt each other less often. Further, graphs
with fewer crossings are preferred for graphic user interfaces.

As a starting point for a systematic study, we consider a special case of CROSSING MINIMIZATION.
Already for this case, we obtain NP-hardness and W([1]-hardness results, and ETH-based lower
bounds. Specifically, suppose that the input also contains a collection D of d non-crossing line
segments such that each point in P belongs to exactly one line in D, and L does not contain line
segments between points on the same line in D. Clearly, CROSSING MINIMIZATION is the case where
d = n — then, P is in general position. The case of d = 2 is of interest not only because it is the most
restricted non-trivial case, but also since it corresponds to a class of graphs that has been well studied
— specifically, it is CROSSING MINIMIZATION where G = (P, L) is a (bipartite) graph with a so called
two-layer drawing. For d = 2, we consider three basic choices of F. For perfect matchings, we show (i)
NP-hardness with an ETH-based lower bound, (%) solvability in subexponential parameterized time,
and (%) existence of an O(k?)-vertex kernel. Second, for Hamiltonian paths, we show (i) solvability
in subexponential parameterized time, and (%) existence of an O(k?)-vertex kernel. Lastly, for
graphs that contain an (s, t)-path, we show (i) NP-hardness and W([1]-hardness, and (%) membership
in XP.

© Akanksha Agrawal, Grzegorz Guspiel, Jayakrishnan Madathil, Saket Saurabh, and]
37 Meirav Zehavi; THO

licensed under Creative Commons License CC-BY }
35th International Symposium on Computational Geometry (SoCG 2019). BN
Editors: Gill Barequet and Yusu Wang; Article No. 7; pp. 7:1-7:17 T

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

]

[N
[

mailto:agrawal@post.bgu.ac.il
mailto:guspiel@tcs.uj.edu.pl
mailto:jayakrishnanm@imsc.res.in
mailto:saket@imsc.res.in
mailto:meiravze@bgu.ac.il
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2

Connecting the Dots (with Minimum Crossings)

2012 ACM Subject Classification Theory of computation — Fixed parameter tractability

Keywords and phrases crossing minimization, parameterized complexity, FPT algorithm, polynomial
kernel, W[1]-hardness

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.7

Related Version A full version of the paper is available at https://akanksha-agrawal.weebly.
com/uploads/1/2/2/2/122276497/crossings.pdf.

Funding Akanksha Agrawal: The work was carried out when the author was employed at Hungarian
Academy of Sciences, and was supported by ERC Consolidator Grant SYSTEMATICGRAPH (No.
46 725978).

Grzegorz Guépiel: Partially supported by the MNiSW grant DI2013 000443.

Saket Saurabh: Supported by ERC Consolidator Grant LOPPRE (No. 819416).

Meirav Zehavi: Supported by ISF grant no. 1176/18.

Acknowledgements We thank Grzegorz Gutowski and Pawet Rzazewski for many valuable comments
regarding the NP-hardness proof for CM-PM.

1 Introduction

Let F be an infinite family of (possibly vertex-labeled) graphs. Suppose that given a graph
F, the membership of F' in F is testable in time polynomial in the size of F. For the family
F, we define a prototype CROSSING MINIMIZATION problem as follows (see Fig. 1). Given
a set P of (possibly labeled) n points in the two-dimensional Euclidean plane, a collection
L C Lines(P) = {¢ : ¢ is a line segment with both endpoints in P}, and a non-negative integer
k, decide if there exists a subcollection L’ C L such that the graph G = (P, L') is isomorphic?
to a graph in F and L’ has at most k crossings. The notation G = (P, L’) refers to the
graph on vertex set P, where two vertices are adjacent if and only if there is a line segment
that connects them in L’. Moreover, the number of crossings of L’ is the number of pairs of
line segments in L’ that intersect each other at a point other than their possible common
endpoint. The CROSSING MINIMIZATION problem is a general model for a wide range of
scenarios where we have a set of points of interest that correspond to geographical areas or
fixed objects such as cities, manufacturing machinery or immobile equipment, attractions
and mailboxes, and we want to build, draw or exhibit connections between them (where L
indicates where it is feasible to have these connections) in order to obtain a structure in F.
While the objective of seeking a solution with few crossings is of interest from a theoretical
viewpoint, it is also well motivated by practical considerations. For example, public tracks
(such as roads, highways or even paths in amusement parks) with fewer crossings require the
construction of less bridges, elevated tracks, traffic lights and roundabouts, and therefore
they are likely to be cheaper to build [42], easier and faster to traverse [10], and cause less
accidents [21]. Moreover, signals and moving objects would interrupt each other less often.
This property may be crucial as frequent collision between signals can distort or weaken
them [3]. Furthermore, for moving objects such as robots (cleaning robots, autonomous agents
and self-driving cars) that cannot physically be present in an intersection point simultaneously,
encountering a large number of crossings may require the development of more complex
navigation and sensory systems [37]. Lastly, graphs with fewer crossings are easier to view
and analyze — in graphic user interfaces, for example, visual clarity is a major issue [13].

L 'With respect to vertex-labeled graphs, isomorphism also preserves the labeling of vertices rather than
only their adjacency relationships — that is, a vertex labeled ¢ can only be mapped to a vertex labeled 1.

https://doi.org/10.4230/LIPIcs.SoCG.2019.7
https://akanksha-agrawal.weebly.com/uploads/1/2/2/2/122276497/crossings.pdf
https://akanksha-agrawal.weebly.com/uploads/1/2/2/2/122276497/crossings.pdf

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, and M. Zehavi

Figure 1 An instance of CROSSING MINIMIZATION (in black) where F is the family of (a) perfect
matchings, and (b) graphs that have an (s,t)-path. Solution edges are marked by squiggly lines —
the number of crossings is 2 in (a) and 1 in (b). The d = 3 colorful line segments display D.

Keeping the above applications in mind, three natural choices for the family F are the fam-
ily of (Hamiltonian) paths, the family of graphs that contain an (s,t)-path (identification
of s and ¢t is modeled by vertex labels), and the family of (possibly vertex-labeled) perfect
matchings. Indeed, these families model the most basic scenarios where all points must be
connected by a path (e.g., to plan tracks for sightseeing trains or maintenance equipment
such as cleaning robots or lawn mowers), only a specific pair of points must be connected
by a path (e.g., to transport goods between two destinations), or the points are to be
matched with one another (e.g., to pair up robots and charging ports). Furthermore, the
computational problems that correspond to these families — HAMILTONIAN PATH, (s,t)-
PATH and PERFECT MATCHING, respectively — are among the most classical problems
in computer science [22, 29, 18, 11].

As a starting point for a systematic study, we consider a special case of CROSSING
MINIMIZATION. Already for this case, we obtain NP-hardness and W[1]-hardness results, and
ETH-based lower bounds, alongside positive results. Specifically, suppose that the input also
contains a collection D of d non-crossing line segments such that each point in P belongs to
exactly one line in D, and L does not contain line segments between points on the same line
in D (see Fig. 1).2 Clearly, CROSSING MINIMIZATION is the case where d = n — then, the set
P can be in general position. The case of d = 2 is of interest not only because it is the most
restricted non-trivial case, but also since it corresponds to a class of graphs that has been well
studied in the literature — specifically, this case is precisely CROSSING MINIMIZATION where
G = (P, L) is a (bipartite) graph with a so called two-layer drawing. Clearly, our hardness
results carry over to any generalization of the case where d = 2. For this case, we consider
the aforementioned three basic choices of F, and obtain a comprehensive picture of their
complexity. In what follows, we discuss our contribution, and then review related literature.

1.1 OQOur Contribution

Our study focuses on the class of two-layered graphs. Formally, a two-layered graph is a
bipartite graph G with vertex bipartition V(G) = X UY that has a two-layer drawing — that
is, a placement of the vertices of X on distinct points on a straight line segment L;, and the

2 Having lines segments between points on the same line in D only makes the problem more general.

7:3

SoCG 2019

7:4

Connecting the Dots (with Minimum Crossings)

vertices of Y on distinct points on a different straight line segment Ly such that Li and Lo
are parallel to each other. (For ease of understanding, we take L; to be a segment of the
line y = 1 in the plane, and similarly, Lo to be a segment of the line y = 0.) The relative
positions of the vertices in X and Y on L; and L, respectively, are given by permutations
ox and oy. Each edge is drawn using a straight line segment connecting the points of its
end-vertices. We refer to (o0x,0y) as the two-layered embedding/drawing of G. Note that
(ox,0y) uniquely determines which edges intersect. The crossing minimization problem that
corresponds to PERFECT MATCHING on two-layered graphs is defined as follows.

CROSSING-MINIMIZING PERFECT MATCHING (CM-PM) Parameter: k
Input: A two-layered graph G (i.e., a bipartite graph G with bipartition V(G) = X UY,
and orderings ox and oy of X and Y, respectively), and a non-negative integer k.

Question: Does G have a perfect matching with at most k crossings?

Similarly, we define the crossing minimization variants of HAMILTONIAN PATH (the
existence of a path that visits all vertices)® and (s, t)-PATH (the existence of a path between
two designated vertices). We refer to these problems as CROSSING-MINIMIZING HAMILTONIAN
PatH (CM-HP) and CROSSING-MINIMIZING (s,t)-PATH (CM-PATH).

Our Results. In this paper, we present a comprehensive picture of both the classical and
parameterized computational complexities of these three problems as follows.*

CM-PM.

e Negative. NP-complete even on graphs of mazximum degree 2. Moreover, unless the ETH
fails, it can be solved neither in time 2°("+™) nor in time 20(VkF)p0M) on these graphs,
(where n and m are respectively the number of vertices and edges of the input graph.)

e Positive. Admits a kernel with O(k?) vertices. Moreover, it admits a subexponential
parameterized algorithm with running time 20(VEp0M) | Iy light of the negative result
above, the running time of this algorithm is optimal under ETH.

We briefly remark that the proof of NP-completeness of CM-PM resolves an open
question related to a problem called TOKEN SWAPPING (see Section 1.2), introduced in 2014
by Yamanaka et al. [48, 49]. Two generalizations of TOKEN SWAPPING were introduced
by Yamanaka et al. [48, 49] and Bonnet et al. [7], both known to be NP-complete due to
Miltzow et al. [40]. One of the results of Bonnet et al. [7] is the analysis of the complexity of
all three token swapping problems on simple graph classes, including trees, cliques, stars and
paths. SUBSET TOKEN SWAPPING was shown to be NP-complete on the first three classes,
but the status of the problem for paths was unknown. Since SUBSET TOKEN SWAPPING
restricted to paths is equivalent to our CM-PM (noted by Miltzow [39]), we derive that
SUBSET TOKEN SWAPPING restricted to paths is NP-complete as well.

3 We remark that our results for HAMILTONIAN PATH can be extended to HAMILTONIAN CYCLE.
1 Due to lack of space, several proofs have been omitted from the extended abstract.

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, and M. Zehavi

CM-HP.

e Negative. NP-complete even on graphs that admit a Hamiltonian path. Unless the ETH
fails, it can be solved neither in time 2°("*™) nor in time 20(VE) 0 on these graphs.

e Positive. Admits a kernel with O(k?) vertices. Moreover, it admits a subexponential
parameterized algorithm with running time 20(Vklogh)nO(1) light of the negative
result above, the running time of this algorithm is almost optimal under ETH.

While HAMILTONIAN PATH is a classical NP-complete problem [22], we prove that in
the case of CM-HP, the hardness holds even if we know of a Hamiltonian path in the
input graph (in which case HAMILTONIAN PATH is trivial). We also comment that in the
case of CM-HP (and also CM-PATH), unlike the case of CM-PM, the problem becomes
trivially solvable in polynomial time on graphs of maximum degree 2. Indeed, graphs of
maximum degree 2 are collections of paths and cycles, and hence admit only linearly in n
many Hamiltonian paths that can be easily enumerated in polynomial time. Then, CM-HP
is solved by testing whether at least one of these Hamiltonian paths has at most k crossings.
In fact, most natural NP-complete graph problems become solvable in polynomial time on
graphs of maximum degree 2, therefore we find the hardness of CM-PM on these graphs
quite surprising.

CM-Path.

e Negative. NP-complete and W[1]-hard. Specifically, unless W[1] = FPT, it admits
neither an algorithm with running time f(k)n®® nor a kernel of size f(k), for any
computable function f of k.

e Positive. Member in XP. Specifically, it is solvable in time n®®).

In light of our first two sets of results, we find our third set of results quite surprising;:
(s,t)-PATH is the easiest to solve among itself, PERFECT MATCHING and HAMILTONIAN
PATH,? yet when crossing minimization is involved, (s,t)-PATH is substantially more difficult
than the other two problems — indeed, CM-PM is not even FPT (unless W[1] = FPT).

Our Methods. In what follows, we give a brief overview of our methods.

CM-PM. We prove that CM-PM on graphs of maximum degree 2 is NP-hard by a reduction
from VERTEX COVER. The same reduction shows that CM-PM does not admit any 2°(*+7)_
time (or 20(‘/E)n0(1)—time) algorithm unless the ETH fails.

For our algorithm and kernel, consider an instance (G, k) of CM-PM, where V(G) = XUY
is the vertex bipartition with |X| = |Y| = n. For i € [n], let x; and y; denote the i'" vertices
of X and Y, respectively, in the given two-layered embedding of G. It is not difficult to see
that the only perfect matching with no crossings, if such a matching exists, is {z;y; | i € [n]}.
Therefore, if M is a perfect matching and x;y; € M with ¢ # j, then the edge z;y; must

5 In particular, (s, t)-PATH can be directly solved in linear time via BFS [11], while PERFECT MATCHING is
only known to be solvable by more complex (non-linear time) algorithms such as Edmonds algorithm [18],
and the status of HAMILTONIAN PATH is even worse given that it is NP-complete [22].

7:5

SoCG 2019

7:6

Connecting the Dots (with Minimum Crossings)

intersect another edge in M, which yields a crossing. In fact, ;; must intersect at least
|j — i| edges. Therefore, no feasible solution for CM-PM can contain an edge z;y; with
|7 —i| > k. This observation plays a key role in both our algorithm and kernel designs.
Our algorithm is based on dynamic programming (DP), and its analysis is based on Hardy-
Ramanujan numbers [26]. (By considering these numbers, we are able to derive a running
time bound of O*(?O(‘/E)).) Very briefly, at stage ¢ we consider the graph G;, the subgraph
of G induced by X; UY; = {x;,y; | j <i}. Our algorithm “guesses” which subsets of V(G;)
are going to be matched to “future vertices”, i.e., vertices in V(G) \ V(G;), in an optimal
solution, and solves the problem optimally on the graph induced by the remaining vertices.
For the kernel, we show that either (G, k) is a no-instance or the number of “bad pairs”, i.e.,
{zi,y;} where z;y; ¢ E(G), cannot exceed 2k. We then bound the number of pairs {x;, y; }
between two consecutive bad pairs by O(k) again, which gives a kernel with O(k?) vertices.

CM-HP. By a reduction from a variant of HAMILTONIAN PATH on bipartite graphs, we
show that CM-HP is NP-hard even if the input graph is assumed to have a Hamiltonian
path. For our FPT algorithm and kernel, we adopt a strategy similar to the one we employed
for CM-PM.

CM-PATH. We prove the W[1]-hardness of CM-PATH by giving an appropriate reduction
from MULTI-COLORED CLIQUE, which is known to be W[1]-hard [19]. Given an instance
(G,V1,Va, ..., Vi) of MULTI-COLORED CLIQUE (G is a k-partite graph, and the problem
is to check whether G contains a clique with exactly one vertex from each V;), we create
an equivalent instance (G', X,Y, s, t, k') of CM-PATH, where G’ is a two-layered graph, as
follows. We create an s-t path in G’ that “selects” a vertex from each V; and an edge for
each (distinct) pair (V;,V;). To this end, for each V;, we have a vertex selection gadget V;,
and for (distinct) V;, V}, we have an edge selection gadget &;;. The vertex and edge selection
gadgets are arranged in a linear fashion to create an s — ¢ path in G’. In the construction,
we add a pair of non-adjacent vertices in &;; for each edge between V; and V;. We also add a
path between the pair of (non-adjacent) vertices whose edges cross the gadgets V; and V;,
which enforces compatibility between vertices and edges that are selected. Finally, by setting
k' appropriately, we get the desired reduction.

As for the XP algorithm for CM-PATH, we guess which edges of G are going to be involved
in crossings in a feasible solution. The problem then reduces to connecting these guessed
edges using crossing-free subpaths, which can be done in polynomial time.

1.2 Related Works

The Crossing Number Problem. The crossing number of a graph G is the minimum
number of crossings in a plane drawing of G. The notion of a crossing number originally
arose in 1940 by Turdn [46] for bipartite graphs in the context of the minimization of the
number of crossings between tracks connecting brick kilns to storage sites. Computationally,
the input of the CROSSING NUMBER problem is a graph GG and a non-negative integer k, and
the task is to decide whether the crossing number of G is at most k. This problem is among
the most classical and fundamental graph layout problems in computer science. It was shown
to be NP-complete by Garey and Johnson in 1983 [23]. Not only is the problem NP-complete
on graphs of maximum degree 3 [27], but also it is surprisingly NP-complete even on graphs
that can be made planar and hence crossing-free by the removal of just a single edge [8].
Nevertheless, CROSSING NUMBER was shown to be FPT by Grohe already in 2001 [24], who

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, and M. Zehavi

developed an algorithm that runs in time f(k)n? where f is at least double exponential.® A
further development was achieved by Kawarabayashi and Reed [32], who showed that the
problem is solvable in time f(k)n. On the negative side, Hlineny and Dernér [28] proved
that CROSSING NUMBER does not admit a polynomial kernel unless NP C coNP/poly.
Variants of CROSSING NUMBER where the vertices can be placed only on prespecified
curves are extensively studied. Closely related to our work is the well-known TwoO-LAYER
CROSSING MINIMIZATION problem: given a bipartite graph G with vertex bipartition
V(G) = X UY, and a non-negative integer k, the task is to decide whether G admits a
two-layered drawing where the number of crossings is at most k. This problem originated
in VLSI design [44]. A solution to the TwO-LAYER CROSSING MINIMIZATION problem is
also useful in solving the rank aggregation problem, which has applications in meta-search
and spam reduction on the Web [6]. We refer the reader to [50] and references therein for
other applications. The Two-LAYER CROSSING MINIMIZATION problem is long known to
be NP-complete, even in its one sided version where we are allowed to permute vertices
only from one (fixed) side [16, 17]. Further, the membership of Two-LAYER CROSSING
MINIMIZATION in FPT has already been proven close to two decades ago by Dujmovic et
al. [15]. Noteworthy is also the well-studied variant of CROSSING NUMBER that restricts
the vertices to be placed only on a prespecified circle and edges are drawn as straight line
segments. Both of these variants as well as their various versions are subject to an active line
of research [33]. Further, aesthetic display of these layouts are of importance in biology [36],
and included in standard graph layout software [31] such as yFiles, Graphviz, or OGDF. For
more information on CROSSING NUMBER and its variants, we refer to surveys such as [43].

Problems on Fixed Point Sets. Settings where we are given a set P of points in the
plane that represent vertices, and edges are to be drawn as straight lines between them,
are intensively studied since the early 80s. A large body of work has been devoted to the
establishment of combinatorial bounds on the number of crossing-free graphs on P, where
particular attention is given to crossing-free triangulations, perfect matchings and Hamiltonian
paths and cycles. Originally, the study of these bounds was initiated by Newborn and Moser
in 1980 [41] for crossing-free Hamiltonian cycles. For more information, we refer to the
excellent Introduction of Sharir and Welzl [45] and the references therein. Computationally,
the problem of counting the number of such crossing-free graphs (faster than the time required
to enumerate them) is of great interest (see, e.g., [47, 4, 38]). Furthermore, the computation
of a single crossing-free graph on P (such as a perfect matching), possibly with a special
property of being “short” [2, 1, 9], has already been studied since 1993 [30]. To the best of
our knowledge, the minimization of the number of crossings (rather than the detection of
a crossing-free graph) has received only little attention, mostly in an ad-hoc fashion. An
exception to this is the work of Hallddrsson et al. [25] with respect to spanning trees. We
remark that they study the problem in its full generality, where the computation of even a
crossing-free spanning tree is already NP-complete [34, 30].

Related to our study is also the METRO LINE CROSSING MINIMIZATION problem, intro-
duced by Benkert et al. [5]. Given an embedded graph G on P, as well as k pairs of vertices
(called terminals), a solution to this problem is a set of paths that connect their respective
pairs of terminals, and which has minimum number of “crossings” under a definition different

5 We find the contrast between this result and our result on CM-PATH somewhat surprising. At first
glance, our CM-PATH problem seems computationally simpler than CROSSING NUMBER (where the
embedding is computed from scratch), yet our problem is W[1]-hard while CROSSING NUMBER is FPT.

77

SoCG 2019

7:8

Connecting the Dots (with Minimum Crossings)

than ours. Specifically, paths are thought of as being drawn in the plane “alongside” the
edges of GG rather than on the edges themselves. Such a formulation allows to reuse a single
edge a large number of times. Therefore, the avoidance of crossings might come at the cost
of congesting the same tracks by buses and trains (or building many parallel tracks).

2 Preliminaries

We use N to denote {0,1,2,...}. For n € N, let [n] = {1,2,3,...,n}, and [n]o = [n] U {0}.

Two-layered graphs. Whenever context is clear, denote the vertex bipartition of a two-
layered graph G (given by the two-layer drawing) by (X,Y). Let nx = | X| and ny = |Y.
For i € [nx], let z; be the ith vertex of X, and for j € [ny], let y; be the jth vertex of Y.
Moreover, we say that ¢ is the index of the vertex z;, and j is the index of the vertex y;;
we write index(x;) = ¢ and index(y;) = j. Similarly, let X; denote {z, | 1 <r <3}, and
let Y; denote {y, | 1 <r <j}. Fori,j € [nx], where ¢ < j, the set X, ; denotes the set
{zp | i <p < j}. Moreover, if i < j, then X;; = (). The set Y; ; is defined analogously for
i,j € [ny]. A crossing in G is a pair of edges intersecting at a point other than their possible
common endpoints. Note that two edges z;y; and z,y,, where 7,7 € [nx] and j,s € [ny],
form a crossing (or, cross each other) if and only if r > i,j > sori > r,s > j. For a
subgraph H of G, cr(H) denotes the number of crossings in H. Similarly, for a set of edges
E' C E(G), cr(E’") denotes the number of crossings in the subgraph induced by E’.
For an introduction to parameterized complexity and kernelization, see [12, 14, 20].

3 NP-hardness for CM-PM

We show that CM-PM is NP-hard via a reduction from VERTEX COVER (known to be
NP-hard from [35]). The VERTEX COVER problem takes as input a graph H and an integer [,
and the goal is to check if there is S C V(H) of size at most [, such that H — S has no edges.

Let (H,!l) be an instance of VERTEX COVER. We create a corresponding instance (G, k)
of CM-PM. The general idea behind the reduction is to use two gadgets. The first one is
created for every vertex of H. There are two possible perfect matchings in each copy of the
gadget. Selecting one of these matchigs corresponds to choosing whether the vertex belongs
to the vertex cover or not. The second gadget is created for every edge of H. There are also
two possible perfect matchings in each copy of the gadget, corresponding to orienting the
edge in one of the two possible directions. The details of the construction ensure that the
number of crossings is minimized when each edge is oriented towards a selected vertex and
the number of selected vertices is minimal. We assume without loss of generality that the
two straight line segments are parallel and horizontal. Vertex gadgets are aligned in such a
way that there are no crossings between them, but each of them defines regions between the
vertices, called slots, that are used to anchor edge gadgets. The heart of the argument is a
careful analysis of the number of crossings between different gadgets.

For any integer s > 1, the vertex gadget of size s is a cycle on 8s vertices together with a
path on 2 vertices, positioned as shown in Figure 2. The vertex gadget defines 2s slots. The
slots are spaces between the vertices, whose exact location is marked in Figure 2 using gray
rectangles. The ones to the left of the pink edge are called left slots and the ones to the right
are called right slots. Furthermore, observe that there are only two ways to choose a perfect
matching in this gadget: either take all the blue edges and the pink edge in the middle, or
take all the yellow edges and the pink one. We interpret choosing the blue (yellow) matching
as selecting (not selecting) the vertex to the vertex cover.

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, and M. Zehavi

[XX XK XXX

Figure 2 The vertex gadget of size 4, with 8 slots colored gray.

Figure 3 The edge gadget and the placement of its vertices in slots.

We fix an ordering vy, ..., v, on the vertices of H. For every v € V(H), we create a copy
of the vertex gadget of size 2d(v). We arrange the gadgets on the two line segments in such a
way that each gadget occupies a separate range of the x axis and for every i < 7, the gadget
for v; is to the left of the gadget for v;.

We process the edges in any order. For every v;v; € E(H), where ¢ < j, we select two
first unselected right slots in the gadget for v; and two first unselected left slots in the gadget
for v;. The edge gadget for v;v; is a cycle on 6 vertices that are labeled and arranged on the
line segments as shown in Figure 3. These vertices are carefully placed in the slots as follows:
vertices a and b in the first of the two selected slots of the gadget for v;, vertex c in the
second of these two slots, vertex d in the first of the two selected slots of the gadget for v;,
and vertices e and f in the second of these two slots. The edge gadget admits two different
perfect matchings. We interpret choosing the green (red) matching as orienting the edge
towards v; (v;). For a complete example of the reduction for a small graph, see Figure 4.

Now by setting the “budget” for the number of edge crossings appropriately, we can
obtain the following theorem (we refer to the full version for a detailed analysis).

» Theorem 1. CM-PM is NP-hard, even if the maximum degree of the input graph is 2.

4 FPT Algorithm for CM-PM

Let (G, k) be an instance of CM-PM, with vertex bipartition X and Y, where | X| = |Y| = n.

(Here, we note that if | X| # |Y'| then (G, k) is a no-instance as it does not admit a perfect
matching.) We will design an FPT algorithm for CM-PM running in time 20(VE) O Our
algorithm will be a DP algorithm which processes the graph from left to right. That is to
say, for each i = 1,2,...,n, at stage ¢, we consider the graph G; = G[X; UY;], the graph
induced by {x1,...,2;,91,...,¥i}, and solve a family of subproblems, the solution for one of
which will lead to an optimal solution for the entire graph G. We will bound the number of
sub-instances that we need to solve at each stage 4, for i € [n], by 20(Vk) Ty achieve the
above, we will use a well-known result on the number of partitions of an integer, (which says

that the number of partitions of an integer k is QO(ﬂk))). (For the integer 6, a partition of it
is 14+ 2+ 3.) We will rely on the fact that for a number ¢, we can compute all its partitions
in time bounded by 20D This bound will be crucial for achieving the running time.

We first explain the intuition behind our algorithm. Suppose (G, k) is a yes-instance and
let M be a perfect matching of G with cr(M) < k. Fix i € [n]. Consider how M saturates
the “future vertices,” i.e., vertices in X;11,, UYj41,. Consider a future vertex, say z; for
some j > ¢. Using the fact that cr(M) < k, we will show that M cannot match x; to a vertex

7:9

SoCG 2019

7:10

Connecting the Dots (with Minimum Crossings)

Figure 4 A graph H and the two-layered graph G obtained by passing H to the reduction
algorithm, vertex gadgets presented schematically.

in Y;_j. Therefore, the only vertices in X; UY; that can possibly be matched to vertices in
the future belong to X; 41 UY;_k11. In other words, while doing a DP from left to right,
by the time we get to stage i, the intersection of the potential solution with X; , UY;_g
is completely determined. This observation suggests the most obvious strategy: at stage 1,
“guess” how the solution matches (and saturates) the vertices in X;_p41,;UY;_g+1,. But this
strategy will only lead to an algorithm running in time k©®*)n®M) Observe that since we are
only interested in a matching with the least possible number of crossings, we need not look
at all possible matchings in G[X;_k11,; U Yi_r41,]. We only need to look at which subsets
of X; k11, and Y;_41,; are saturated by M. Thus, from each collection of matchings that
saturate the same subset of X; 111, UY;_k11,;, we remember the matching that incurs the
least number of crossings. This observation can be used to obtain an algorithm running in
time 29RO To further improve this running time, we show that the number of subsets
of X; 41, UYi_ky1, that are not saturated by the intersection of any potential solution
with X; UY; cannot exceed 20(Vk), (This is where we will use the bound that the number of
partitions of an integer ¢ is bounded by 20(‘/{).) This will lead us to an algorithm with the
claimed running time for the problem.

We start by giving some notations and preliminary results that will be helpful later. We
let Sat(M) = {u,v | uv € M}. That is, Sat(M) is the set of vertices saturated by M in G.

Partitions of an integer. For a positive integer «, a partition of « refers to writing a as a
sum of positive integers (greater than zero), where the order of the summands is immaterial.
Each summand in such a sum is called a part of a. For example, 16 =1+4+4+ 7 is a
partition of 16. Note that here two of the parts (the two 4s) are the same. We, however, are
interested in only those partitions of o in which the parts are all distinct. Let us call such
partitions distinct-part partitions. For example, {1,2,6,7} is a distinct-part partition of 16.
It is known that the number of partitions (and hence the number of distinct-part partitions)
of an integer k is bounded by 20(VR) [26]. In light of this result, it is not difficult to see that
given an integer k, all distinct-part partitions of k can be generated in time 20(VF) For
future reference, we state these results below.

» Lemma 2. The number of distinct-part partitions of any positive integer k, is at most
20(VE) Moreover, we can generate all of these distinct-part partitions in time 20(Vk),

Some important sets for the algorithm. For i € [n], we let X; = {;_p¢ | £ € [k] and i —
k+¢>1}and Y; = {y;_pye | £ € [k] and i — k + £ > 1} (see Figure 5). We will argue that
in any perfect matching M in G with cr(M) < k, the vertices from X; which are matched
to a vertex y,, with s > i+ 1, belong to the set)A(l Similarly, we can argue that fﬁ is the set
of vertices from Y; which can possibly be matched to vertices x,, with s > 7 + 1.

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, and M. Zehavi

Xs o QCXs
T T2 x3 T4 '_m_;;__rg_};_;g_' Tg /,*' P ‘~\
° ° ° o 'e ° ° o! o 1 @2 x3 T4, s T a7 1 T3 To
- e o o o'e o1 0.0 0
‘g 3 \
N - - _I
o © o' 0o © o o o o
YiooY2 Yz Ys Ys Yo YT YUs Yo e © © o o o o o o
e e e e m = Y1 Y2 Y3 Ya Ys Yo yr Ys Yo
¥ -~
N e (b) k = 4. Q = {:L‘5,I6,Ig} g XS. The
(a) The dashed rectangles show Y3 and Xg, number below each z; € Q shows csts(z;).
when k = 4. CstSets(Q) = {4, 3,1} and cstg(Q) = 8.

Figure 5 An example of)?i, }A/i, QC)?i, CstSet; (Q) and cst; (Q).

We will now associate costs to vertices (and subsets) of X; (resp. Y;), which will be helpful
in obtaining lower bounds on the number of crossings, when vertices from X; (resp. ﬁ) are
matched to vertices ys (resp. xs), where s > ¢ + 1. To this end, consider i € [n] and a vertex
T, €)?i. We let cst;(z,) =i+ 1—r. Since z, €)?i, we have r < 4, and thus, cst;(z,) > 1.
For a subset Q C X;, we let CstSet;(Q) = {cst;(z) | € Q} and cst;(Q) = > e Csti(z).
Similarly, for ¢ € [n] and a vertex y, €)A/i, we let cst;(y.) =i+ 1 —r > 1. Moreover, for a
subset Q C Y;, we let CstSet;(Q) = {csti(y) | y € Q} and cst; (Q) = >_yeqcsti(y). We note
that, for each i € [n], we have cst;(#) = 0. In order to understand the intuition behind these
definitions, look at the ith stage in our algorithm. At stage i, we consider the graph G[X;UY;].
Consider the vertices in)?Z that are matched to vertices in the future (i.e., vertices ys where
s > 1). Note that if z; gets matched to a future vertex, then x; participates in at least
one crossing (in the final solution), and if x;_; gets matched to a future vertex, then x;_;
participates in at least two crossings and so on. In particular, z, €)/(:Z-, if matched to a future
vertex participates in at least i4+1—r crossings. So, cst;(z;) is a lower bound on the number of
crossings in which x, participates (or cost incurred by z,.) if it gets matched to a future vertex.
For a set Q C X’i, CstSet;(Q) is the set of minimum costs incurred by each element of Q.
Moreover, cst;(Q) is the cost incurred by @ if all its elements get matched to future vertices.
Now using the notion of distinct-part partitions of an integer, we introduce some “special”
sets of subsets of X and Y, respectively. These sets will be crucially used while creating
the sub-instances in our DP algorithm. For « € [k], let P, be the set of all distinct-part
partitions of a. Furthermore, let P<p = Uae[r] Po- From Lemma 2, we have |P<i| = 20(Vk),
Consider i € [n], a € [k], and P € P<,. We let S5 (P) = {z;41-p | E€Pandi+1— > 1}.
(For example, for P = {1,2,6,7,8} and i = 6, we have S (P) = {zg,x5,21}.) Note that
St (P) C X, CstSet;(S% (P)) = P, and cst;(S%(P)) = a, where P is a partition of a € [k].
Similarly, we define S%(P) = {y;41-5 | B €Pandi+1— > 1} C Y. Again, note that
CstSet;(S% (P)) = P and cst;(S% (P)) = a. We let S = {S%(P) |P € P<i} U {0} C 2% and

~

v ={SL(P) | P e P} U{D} C 2V

» Lemma 3. The families S' and Si contain at most [P<y| + 1 = 20VR) sets each.

Moreover, for each i € [n], the families S’ and S can be generated in 200VE) time.

We associate a set of integers to every pair (S,5") € S x Sk, for each i € [n]. These sets
will give the “allowed” number of crossings for a matching in the graph G;. Consider i € [n],
S e S%, and S’ € §y. We let Alw;(S,5") = {¢ € [k]o | £ < k — max{cst;(S5),cst;(S7)}}.

» Observation 4. Consideri € [n]\ {1}. For S € S% and Q C S\ {;}, we have Q € S ".
Similarly, for S € S% and Q' C S"\ {y;}, we have Q' € S .

7:11

SoCG 2019

7:12

Connecting the Dots (with Minimum Crossings)

» Observation 5. Consideri € [n]\{1}. For S € S% and Q C S\{z:}, we have cst;_1(Q) <
cst;(S) —|S|. Similarly, for 8" € 8} and Q' C S’ \ {z;}, we have cst;_1(Q") < cst;(S") — ||

We now define the notion of a “compatible matching.” Consider i € [n], S € 83(7 and
S € 8i. We say that a matching M in G; is (3,5, S')-compatible if S = X, \ Sat(M),
S =Y; \ Sat(M), and cr(M) < k — max{cst;(S), cst;(S')}. Compatible matchings will be
helpful in establishing the correctness of our algorithm, in which we will be considering
matchings of G; that saturate exactly (X; UY;)\ (SUS’), while incurring at most a certain
allowed number of crossings. Suppose at the ith stage of our algorithm, we consider a
matching, say M;, of G; that does not saturate .S. We would like to extend M; to a matching
of G with at most k crossings. That is, at stage ¢, M; matches S to future vertices. Therefore,
while extending M; to a matching of the entire graph G, we will incur at least cst;(.S) more
crossings (in addition to cr(M;)). Therefore, in order to be able to extend M; to matching
of G with at most k crossings, cr(M;) cannot exceed k — cst;(.S). Identical reasoning holds
for the set S’.

We are now ready to define the states of our DP table. For each i € [n], S € S%
and S’ € St with |S| = |S|, and an integer ¢ € Alw;(S,S") = {£ € [k]o | £ < k —
max{cst;(S), cst;(S”)}}, we define

1, if there is a matching M in G;, such that cr(M) = ¢ and
T[i,S, S () = Sat(M) = (X; \ S)U (Y;\ 9),

0, otherwise.

Observe that (G, k) is a yes-instance of CM-PM if and only if there is ¢ € [k]o, such
that T'[n,0,0,¢] = 1. A matching M in G; is said to realize T[i, S,S’, /], if cx(M) = ¢ and
M is (3,5, S")-compatible. In the above we note that £ < k — max{cst;(5),cst;(S")}, as
¢ € Alw;(S,S"). Let us now see how T[i, S, S’ £] can be computed.

Base Case. Consider the entry T'[1,.5,5’, ¢]. Note that cr(Gy) = 0. Thus, if £ > 0, we have
T[1,S5,5',¢] = 0. Now we consider the case when £ = 0. Recall that by definition, we have
|S| =|5’|. If S = {z1} and S" = {y1}, then we should not match any vertex. Thus, we have
a matching (which is the empty set) with 0 crossings, and thus, T[1,5,S’,¢] = 1. Otherwise,
we have S = 5" = (). Note that the only possible matching in the graph G[{z1,y1}] is {z1y1}.
So, if z1y1 € E(G), then {z1y1} is a matching with 0 crossings, and hence T[1, S,5’,¢] = 0.
Otherwise, we have z1y; ¢ F(G), and hence T[1,5,5",¢] =0

We now move to our recursive formulae for the computation of the entries of our table.
We set the value of T'i, S, 5", £] (recursively) based on the following cases, where i > 1.

Case 1: x; € S and y; € S’. From Observation 4, we have that S\ {z;} € S%* and
S\ {y;} € Si*. Also, from Observation 5 it follows that £ € Alw;_1(S \ {z;},5" \ {v:})-
We set Ti, S, 8", =T[i — 1,5\ {z:},S \ {vi}, 4.

» Lemma 6. The computation of T|i, S, S, £] in Case 1 is correct.

Case 2: z; € Sand y; ¢ S’, or x; ¢ S and y; € S’. We will only argue for the case
when z; € S and y; ¢ S’. (The other case can be handled symmetrically.) Thus, hereafter we
assume that x; € S and y; ¢ S’. In this case, a matching, say M, which realizes T'[i, S, S’,],
must saturate the vertex y; and must not saturate the vertex x;. Thus, M must have an
edge x;y;, where j < i (here we rely on the fact that y; cannot be matched to z;, as z; € 5).

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, and M. Zehavi

Figure 6 An illustration of the edges intersecting x;y;, where x; €)?1;1 \ S. Here, the red edges
intersect z;y; and the green edges do not intersect x;vy;.

As M must satisfy the constraint cr(M) = ¢ < k, we must have i — k < j < ¢. That is,
the vertex to xivhich y; is matched, must belong to the set)/(\'i,l. We will construct a set
QC Sé(_l C 2Xi-1. This set will be used for creating sub-instances whose values are needed
for the computation of T[i, S, 5", ¢]. Intuitively speaking, each set in Q will determine a
vertex to which y; is matched, in the matching that we are seeking for. Note that as y; must
be saturated by any matching that realizes (or complies) with T, S, S’,], the edge, say
Zy; in the matching might intersect other edges of the matching. Therefore, we will have
to account for this extra overhead in the number of crossing edges. To count these extra
crossings incurred, we will define an “overhead” function.

To construct Q, we first construct two sets @, é C 2Xi-1 (each of size at most O(k)).

We will obtain @ D) é 2 Q (in that order, by removing some “bad sets”). For a vertex
zj € (N(ys) NX;_1)\ 9, let Q; = (S\{z;})U{z;}. Intuitively, the vertex y; will be matched
to z;, when Q; is under consideration. Note that Q; C X,_1. Welet O = {Q; | zj €

(N (y:) N Xi—1) \ S}. In the above definition, we only consider the neighbors of y; from

Xi—1\ S, because we require that the desired rnatchlng must not saturate a vertex from S.

Welet Q=0nN S, We now define a function ovh : Q — N (see Figure 6 for an intuitive
illustration). For Q; € Q, we set ovh(Q;) = |Xj+1,; \ S|. To obtain Q, we will delete those

sets from Q which will incur an “overhead” of crossings more than the “allowed” budget.

Before_constructing Q, we first recall the following facts. By the _deﬁnition of é, we have
Qe Syt Moreover, from Observation 4 it follows that S’ € Sl (asy; ¢ S'). We set
Q={Q e Q]f—ovh(Q) € Alw;_1(Q,S")}. Now we set T[i,S,S’, (] as follows.

T[i7S7 SI,Z] == . Q ’
\/QEQ T[Z — 1, Q, 5/7»(- OVh(C))]7 O‘herwise.

» Lemma 7. The computation of T[i,S,S’,] in Case 2 is correct.

Case 3: z; ¢ S and y; ¢ S’. In this case, a matching, say M, which realizes T'[i, S, 5",],
must saturate both the vertices z; and y;. Thus, M must have edges x;y; and x;y;, where
j <iand j <i. (Assuming z; is adjacent to y; in G, it can be the case that j = j/ =4, in
which case z;y; € M.) We will thus have T[i, S, S, 4] = T1[i, S, 5", €] V T3]i, S, S,], where
T[i, S, S, €] and Ts[i, S, S, f] are boolean variables that correspond respectively to the cases
j=j =iand j#i (and j' # i). We now define T} [7, S, 5, 4] and T5[i, S, .5, €], formally.

7:13

SoCG 2019

7:14

Connecting the Dots (with Minimum Crossings)

Defining T3 (¢, S, S, €]. Since x; ¢ S, we have S C)/fi,l. As y; ¢ S’, we have S’ C i}i,l.
By Observation 4, S € S! and S’ € Si'. Note that if a matching M that realizes
T[i, S, S, £] contains the edge x;y; (assuming z;y; is indeed an edge in the graph G), then
cr(M) = cr(M \ {z;y;}). That is, no additional crossing is incurred by adding the edge z;y;
to the matching M \ {z;y;}. Also, note that ¢ € Alw;_1(S,S’). With these observations, we
define Ty[i, S, S’, £] as follows.

TS.S. 0] = {o, if wiyi & B(G),
T[i—1,8,5,£], otherwise.

Defining T» [i,§, S’,£]. Now, to define T3], S, S’,f], we proceed as in Case 2. For a vertex
M IS E\N(yz) ﬂXi_l)\S, let Qj =SuU {$J} We let Q,\: {Qj | T; € (N(yz) ﬂXi_l)\S}, and
Q =0nS% . Similarly, for a vertex y;; € (N(z;) NY;—1)\ S, let Ry =S U {y;:}. We let
R = {Rj | yj € (N(z;) N YVie)\ &8}, and R = RN S 1. We will now construct a set of
“crucial pairs” from Q x R, for the computation of Ts[i, S, S’, ¢]. Towards this, we define a
function ovh : @ x R — N. We set ovh(Q;, Rj/) = | X411, \ S| +|Yjr41:\ 5| — 1, for Q; € Q
and R; € R. Finally, we let € = {(Q,R) € QxR | { —ovh(Q, R) € Alw;_1(Q, R)}. Now we
set T»[i,5, 5, €] as follows.

0, if € =0,

Ty[i, S, S, () =
V(Q,R)ee Tli—1,Q, R, — ovh(Q, R)], otherwise.

» Lemma 8. The computation of T|i, S, S, €] in Case 3 is correct.

As observed earlier, (G, k) is a yes-instance of CM-PM if and only if there is ¢ € [k]o,
such that T[n, 0,0, ¢ = 1. Note that for each i € [n], S € S%, S’ € Si, and £ € Alw;(S, S'),
we can compute the entry T'[i, S, S’ ¢] in time bounded by n®M) . Moreover, the number of
entries in our table is bounded by 20(Vk) o) (see Lemma 3). Thus, the running time of
the algorithm is bounded by 20(vVk)nOM) | The correctness of the algorithm follows from the
correctness of base case and recursive formulae. Thus, we obtain the following theorem.

» Theorem 9. CM-PM admits an algorithm running in time 20(VE) RO,

—— References

1 A. Karim Abu-Affash, Ahmad Biniaz, Paz Carmi, Anil Maheshwari, and Michiel H. M.
Smid. Approximating the bottleneck plane perfect matching of a point set. Comput. Geom.,
48(9):718-731, 2015.

2 A. Karim Abu-Affash, Paz Carmi, Matthew J. Katz, and Yohai Trabelsi. Bottleneck non-
crossing matching in the plane. Comput. Geom., 47(3):447-457, 2014.

3 Jihad Al-Oudatallah, Fariz Abboud, Mazen Khoury, and Hassan Ibrahim. Overlapping Signal
Separation Method Using Superresolution Technique Based on Experimental Echo Shape.

Advances in Acoustics and Vibration, pages 1-9, 2017.

4 Victor Alvarez, Karl Bringmann, Radu Curticapean, and Saurabh Ray. Counting crossing-free
structures. In Symposuim on Computational Geometry 2012, SoCG ’12, Chapel Hill, NC,
USA, June 17-20, 2012, pages 61-68, 2012.

5 Marc Benkert, Herman J. Haverkort, Moritz Kroll, and Martin Né6llenburg. Algorithms for
Multi-criteria One-Sided Boundary Labeling. In Graph Drawing, 15th International Symposium,
GD 2007, Sydney, Australia, September 24-26, 2007. Revised Papers, pages 243-254, 2007.

6 Therese C. Biedl, Franz-Josef Brandenburg, and Xiaotie Deng. Crossings and Permutations.
In Proceeding of the 13th International Symposium on Graph Drawing, GD, volume 3843 of
Lecture Notes in Computer Science, pages 1-12. Springer, 2005.

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, and M. Zehavi

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Edouard Bonnet, Tillmann Miltzow, and Pawel Rzazewski. Complexity of Token Swapping
and Its Variants. Algorithmica, October 2017.

Sergio Cabello and Bojan Mohar. Adding One Edge to Planar Graphs Makes Crossing Number
and 1-Planarity Hard. SIAM J. Comput., 42(5):1803-1829, 2013.

John Gunnar Carlsson, Benjamin Armbruster, Saladi Rahul, and Haritha Bellam. A Bottleneck
Matching Problem with Edge-Crossing Constraints. Int. J. Comput. Geometry Appl., 25(4):245—
262, 2015.

Xuanwu Chen and Ming S. Lee. A case study on multi-lane roundabouts under congestion:
Comparing software capacity and delay estimates with field data. Journal of Traffic and
Transportation Engineering (English Edition), 3(2):154-165, 2016.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, 3rd Edition. MIT Press, 2009.

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G Tollis. Algorithms for
drawing graphs: an annotated bibliography. Computational Geometry, 4(5):235-282, 1994.
Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complezity.
Texts in Computer Science. Springer, 2013.

Vida Dujmovic, Michael R. Fellows, Michael T. Hallett, Matthew Kitching, Giuseppe Liotta,
Catherine McCartin, Naomi Nishimura, Prabhakar Ragde, Frances A. Rosamond, Matthew
Suderman, Sue Whitesides, and David R. Wood. On the Parameterized Complexity of Layered
Graph Drawing. In 9th Annual European Symposium on Algorithms, ESA 2001, Proceedings,
pages 488-499, 2001.

Peter Eades and Sue Whitesides. Drawing graphs in two layers. Theoretical Computer Science,
131(2):361-374, 1994.

Peter Eades and Nicholas C. Wormald. Edge crossings in drawings of bipartite graphs.
Algorithmica, 11(4):379-403, 1994.

Jack Edmonds. Paths, Trees and Flowers. Canadian Journal of Mathematics, pages 449-467,
1965.

Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette. On the
parameterized complexity of multiple-interval graph problems. Theoretical computer science,
410(1):53-61, 2009.

Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: theory
of parameterized preprocessing. Cambridge University Press, 2019.

Per Garder. Pedestrian safety at traffic signals: A study carried out with the help of a traffic
conflicts technique. Accident Analysis & Prevention, 21(5):435-444, 1989.

M R Garey and D S Johnson. Computers and intractability: a guide to the theory of NP-
completeness. W.H. Freeman, New York, 1979.

Michael R Garey and David S Johnson. Crossing number is NP-complete. SIAM Journal on
Algebraic Discrete Methods, 4(3):312-316, 1983.

Martin Grohe. Computing crossing numbers in quadratic time. In Proceedings on 83rd Annual
ACM Symposium on Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece, pages
231-236, 2001.

Magnis M. Halldérsson, Christian Knauer, Andreas Spillner, and Takeshi Tokuyama. Fixed-
Parameter Tractability for Non-Crossing Spanning Trees. In Algorithms and Data Structures,
10th International Workshop, WADS 2007, Halifax, Canada, August 15-17, 2007, Proceedings,
pages 410-421, 2007.

Godfrey H Hardy and Srinivasa Ramanujan. Asymptotic formulage in combinatory analysis.
Proceedings of the London Mathematical Society, 2(1):75-115, 1918.

Petr Hlineny. Crossing number is hard for cubic graphs. J. Comb. Theory, Ser. B, 96(4):455—
471, 2006.

7:15

SoCG 2019

7:16

Connecting the Dots (with Minimum Crossings)

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46
47

48

Petr Hlineny and Marek Dernar. Crossing Number is Hard for Kernelization. In 32nd
International Symposium on Computational Geometry, SoCG 2016, June 14-18, 2016, Boston,
MA, USA, pages 42:1-42:10, 2016.

John E. Hopcroft and Robert Endre Tarjan. Efficient Algorithms for Graph Manipulation [H]
(Algorithm 447). Commun. ACM, 16(6):372-378, 1973.

Klaus Jansen and Gerhard J. Woeginger. The Complexity of Detecting Crossingfree Configur-
ations in the Plane. BIT, 33(4):580-595, 1993.

Michael Junger and Petra Mutzel. Graph Drawing Software. Springer-Verlag, Berlin, Heidelberg,
2003.

Ken-ichi Kawarabayashi and Bruce A. Reed. Computing crossing number in linear time.
In Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego,
California, USA, June 11-13, 2007, pages 382-390, 2007.

Fabian Klute and Martin N6llenburg. Minimizing Crossings in Constrained Two-Sided Circular
Graph Layouts. In 34th International Symposium on Computational Geometry, SoCG 2018,
June 11-14, 2018, Budapest, Hungary, pages 53:1-53:14, 2018.

Jan Kratochvil, Anna Lubiw, and Jaroslav Nesetril. Noncrossing Subgraphs in Topological
Layouts. SIAM J. Discret. Math., 4(2):223-244, March 1991.

Mukkai S Krishnamoorthy and Narsingh Deo. Node-deletion NP-complete problems. SIAM
Journal on. Computing, 8(4):619-625, 1979.

Martin I Krzywinski, Jacqueline E Schein, Inanc Birol, Joseph Connors, Randy Gascoyne,
Doug Horsman, Steven J Jones, and Marco A Marra. Circos: An information aesthetic for
comparative genomics. Genome Research, 19(9):1639-1645, 2009.

J. Malik, J. Weber, Q. T. Luong, and D. Roller. Smart cars and smart roads. In Proceedings
6th. British Machine Vision Conference, pages 367-381, 1995.

Déniel Marx and Tillmann Miltzow. Peeling and Nibbling the Cactus: Subexponential-
Time Algorithms for Counting Triangulations and Related Problems. In 32nd International
Symposium on Computational Geometry, SoCG 2016, June 14-18, 2016, Boston, MA, USA,
pages 52:1-52:16, 2016.

Tillmann Miltzow. Subset token swapping on a path and bipartite minimum crossing
matchings. In Order and Geometry Workshop, Problem booklet., pages 5—6, 2016. URL:
http://orderandgeometry2016.tcs.uj.edu.pl/docs/0G2016-ProblemBooklet . pdf.
Tillmann Miltzow, Lothar Narins, Yoshio Okamoto, Giinter Rote, Antonis Thomas, and
Takeaki Uno. Approximation and Hardness of Token Swapping. In 2/th Annual Furopean
Symposium on Algorithms, ESA 2016, pages 66:1-66:15, 2016.

Monroe M. Newborn and William O. J. Moser. Optimal crossing-free Hamiltonian circuit
drawings of Kn. J. Comb. Theory, Ser. B, 29(1):13-26, 1980.

Michael Osigbemeh, Michael Onuu, and Olumuyiwa Asaolu. Design and development of an
improved traffic light control system using hybrid lighting system. Journal of Traffic and
Transportation Engineering (English Edition), 4(1):88-95, 2017. Special Issue: Driver Behavior,
Highway Capacity and Transportation Resilience.

Marcus Schaefer. The Graph Crossing Number and its Variants: A Survey. The Electronic
Journal of Combinatorics, 20, April 2013.

Carl Sechen. VLSI placement and global routing using simulated annealing, volume 54. Springer
Science & Business Media, 2012.

Micha Sharir and Emo Welzl. On the Number of Crossing-Free Matchings, Cycles, and
Partitions. SIAM J. Comput., 36(3):695-720, 2006.

Paul Turdn. A note of welcome. Journal of Graph Theory, 1(1):7-9, 1997.

Manuel Wettstein. Counting and enumerating crossing-free geometric graphs. JoCG, 8(1):47-77,
2017.

Katsuhisa Yamanaka, Erik D. Demaine, Takehiro Ito, Jun Kawahara, Masashi Kiyomi, Yoshio
Okamoto, Toshiki Saitoh, Akira Suzuki, Kei Uchizawa, and Takeaki Uno. Swapping Labeled

http://orderandgeometry2016.tcs.uj.edu.pl/docs/OG2016-ProblemBooklet.pdf

A. Agrawal, G. Guspiel, J. Madathil, S. Saurabh, and M. Zehavi

49

50

Tokens on Graphs. In Alfredo Ferro, Fabrizio Luccio, and Peter Widmayer, editors, Fun with
Algorithms, pages 364-375, 2014.

Katsuhisa Yamanaka, Erik D. Demaine, Takehiro Ito, Jun Kawahara, Masashi Kiyomi, Yoshio
Okamoto, Toshiki Saitoh, Akira Suzuki, Kei Uchizawa, and Takeaki Uno. Swapping labeled
tokens on graphs. Theoretical Computer Science, 586:81-94, 2015. Fun with Algorithms.
Lanbo Zheng and Christoph Buchheim. A New Exact Algorithm for the Two-Sided Crossing
Minimization Problem. In Proceedings of the First International Conference on Combinatorial
Optimization and Applications, COCOA, volume 4616 of Lecture Notes in Computer Science,
pages 301-310. Springer, 2007.

7:17

SoCG 2019

	Introduction
	Our Contribution
	Related Works

	Preliminaries
	NP-hardness for CM-PM
	FPT Algorithm for CM-PM

