85 research outputs found

    Electricity and Costs Under Regulation and Restructuring

    Get PDF
    And Lester Lave Carnegie Mellon Electricity Industry Center Carnegie Mellon University Pittsburgh, PA 15213 [email protected] And Jay Apt Carnegie Mellon Electricity Industry Center Carnegie Mellon University Pittsburgh, PA 15213 [email protected]

    Geographic smoothing of solar photovoltaic electric power production in the Western USA

    Get PDF
    We examined the geographic smoothing of solar photovoltaic generation from 15 utility-scale plants in California, Nevada, and Arizona and from 19 commercial building installations in California. This is the first comparison of geographic smoothing from utility-scale and building-mounted PV and the first examination of solar PV smoothing in this region. Our research questions were (1) how does geographic smoothing of commercial building rooftop PV compare to that of utility scale PV?, (2) is the geographic smoothing found for utility-scale plants the same for the western US as in India?, and (3) how does the geographic smoothing for PV compare to that of wind? By examining the power output of these generators in the frequency domain, we quantified the smoothing obtained by combining the output of geographically separated plants. We found that utility-scale and commercial rooftop plants exhibited similar geographic smoothing, with 10 combined plants reducing the amplitude of fluctuations at 1 h to 18%–28% of those seen for a single plant. We find that combining a few PV sites together reduces fluctuations, but that the point of quickly diminishing returns is reached after ∼5 sites, and that for all the locations and plant sizes considered, PV does not exhibit as much geographic smoothing as is seen for combining wind plants. We present preliminary theoretical arguments for why geographic smoothing of PV plants is less effective than that for wind plants. The slope of the high-frequency part of the PV power spectrum can at best be geographically smoothed (steepen) to an asymptotic spectrum of f−2. This limit for PV has considerably less smoothing than that for wind\u27s geographic smoothing, shown theoretically and from observed data to be f−2.33

    Evaluation of a proposal for reliable low-cost grid power with 100% wind, water, and solar

    Get PDF
    A number of analyses, meta-Analyses, and assessments, including those performed by the Intergovernmental Panel on Climate Change, the National Oceanic and Atmospheric Administration, the National Renewable Energy Laboratory, and the International Energy Agency, have concluded that deployment of a diverse portfolio of clean energy technologies makes a transition to a low-carbon-emission energy system both more feasible and less costly than other pathways. In contrast, Jacobson et al. [Jacobson MZ, Delucchi MA, Cameron MA, Frew BA (2015) Proc Natl Acad Sci USA 112(49):15060-15065] argue that it is feasible to provide low-cost solutions to the grid reliability problem with 100% penetration of WWS [wind, water and solar power] across all energy sectors in the continental United States between 2050 and 2055 , with only electricity and hydrogen as energy carriers. In this paper, we evaluate that study and find significant shortcomings in the analysis. In particular, we point out that this work used invalid modeling tools, contained modeling errors, and made implausible and inadequately supported assumptions. Policy makers should treat with caution any visions of a rapid, reliable, and low-cost transition to entire energy systems that relies almost exclusively on wind, solar, and hydroelectric power

    DNA multigene characterization of Fasciola hepatica and Lymnaea neotropica and its fascioliasis transmission capacity in Uruguay, with historical correlation, human report review and infection risk analysis

    Get PDF
    Fascioliasis is a highly pathogenic zoonotic disease emerging in recent decades, in part due to the effects of climate and global changes. South America is the continent presenting more numerous human fascioliasis endemic areas and the highest Fasciola hepatica infection prevalences and intensities known in humans. These serious public health scenarios appear mainly linked to altitude areas in Andean countries, whereas lowland areas of non-Andean countries, such as Uruguay, only show sporadic human cases or outbreaks. To understand this difference, we characterized F. hepatica from cattle and horses and lymnaeids of Uruguay by sequencing of ribosomal DNA ITS-2 and ITS-1 spacers and mitochondrial DNA cox1, nad1 and 16S genes. Results indicate that vectors belong to Lymnaea neotropica instead of to Lymnaea viator, as always reported from Uruguay. Our correlation of fasciolid and lymnaeid haplotypes with historical data on the introduction and spread of livestock species into Uruguay allow to understand the molecular diversity detected. We study the life cycle and transmission features of F. hepatica by L. neotropica of Uruguay under standardized experimental conditions to enable a comparison with the transmission capacity of F. hepatica by Galba truncatula at very high altitude in Bolivia. Results demonstrate that although L. neotropica is a highly efficient vector in the lowlands, its transmission capacity is markedly lower than that of G. truncatula in the highlands. On this baseline, we review the human fascioliasis cases reported in Uruguay and analyze the present and future risk of human infection in front of future climate change estimations

    Consumer cost effectiveness of CO2 mitigation policies in restructured electricity markets

    No full text
    We examine the cost of carbon dioxide mitigation to consumers in restructured USA markets under two policy instruments, a carbon price and a renewable portfolio standard (RPS). To estimate the effect of policies on market clearing prices, we constructed hourly economic dispatch models of the generators in PJM and in ERCOT. We find that the cost effectiveness of policies for consumers is strongly dependent on the price of natural gas and on the characteristics of the generators in the dispatch stack. If gas prices are low (∼4/MMBTU),atechnology−agnostic,rationalconsumerseekingtominimizecostswouldpreferacarbonpriceoveranRPSinbothregions.Expensivegas(∼4/MMBTU), a technology-agnostic, rational consumer seeking to minimize costs would prefer a carbon price over an RPS in both regions. Expensive gas (∼7/MMBTU) requires a high carbon price to induce fuel switching and this leads to wealth transfers from consumers to low carbon producers. The RPS may be more cost effective for consumers because the added energy supply lowers market clearing prices and reduces CO _2 emissions. We find that both policies have consequences in capacity markets and that the RPS can be more cost effective than a carbon price under certain circumstances: continued excess supply of capacity, retention of nuclear generators, and high natural gas prices

    Geographic smoothing of solar PV: results from Gujarat

    No full text
    We examine the potential for geographic smoothing of solar photovoltaic (PV) electricity generation using 13 months of observed power production from utility-scale plants in Gujarat, India. To our knowledge, this is the first published analysis of geographic smoothing of solar PV using actual generation data at high time resolution from utility-scale solar PV plants. We use geographic correlation and Fourier transform estimates of the power spectral density (PSD) to characterize the observed variability of operating solar PV plants as a function of time scale. Most plants show a spectrum that is linear in the log–log domain at high frequencies f , ranging from f−1.23{f}^{-1.23} to f−1.56{f}^{-1.56} (slopes of −1.23 and −1.56), thus exhibiting more relative variability at high frequencies than exhibited by wind plants. PSDs for large PV plants have a steeper slope than those for small plants, hence more smoothing at short time scales. Interconnecting 20 Gujarat plants yields a f−1.66{f}^{-1.66} spectrum, reducing fluctuations at frequencies corresponding to 6 h and 1 h by 23% and 45%, respectively. Half of this smoothing can be obtained through connecting 4–5 plants; reaching marginal improvement of 1% per added plant occurs at 12–14 plants. The largest plant (322 MW) showed an f−1.76{f}^{-1.76} spectrum. This suggests that in Gujarat the potential for smoothing is limited to that obtained by one large plant
    • …
    corecore