88 research outputs found

    Decreased NK Cell FcRγ in HIV-1 Infected Individuals Receiving Combination Antiretroviral Therapy: a Cross Sectional Study

    Get PDF
    Background: FcRc is an immunoreceptor tyrosine-based activation motif (ITAM)-signalling protein essential for immunoreceptor signaling and monocyte, macrophage and NK cell function. Previous study from our laboratory showed that FcRc is down-regulated in HIV-infected macrophages in vitro. FcRc expression in immune cells present in HIV-infected individuals is unknown. Methodology/Principal Findings: We compared FcRc expression in peripheral blood mononuclear cells isolated from HIV-1-infected individuals receiving combination antiretroviral therapy and healthy, HIV-1-uninfected individuals. FcRc mRNA and protein levels were measured using quantitative real-time PCR and immunoblotting, respectively. CD56 + CD94 + lymphocytes isolated from blood of HIV-1 infected individuals had reduced FcRc protein expression compared to HIVuninfected individuals (decrease = 76.8%, n = 18 and n = 12 respectively, p = 0.0036). In a second group of patients, highly purified NK cells had reduced FcRc protein expression compared to uninfected controls (decrease = 50.2%, n = 9 and n = 8 respectively, p = 0.021). Decreased FcRc expression in CD56+CD94+ lymphocytes was associated with reduced mRNA (51.7%, p = 0.021) but this was not observed for the smaller group of patients analysed for NK cell expression (p = 0.36). Conclusion/Significance: These data suggest biochemical defects in ITAM-dependent signalling within NK cells in HIVinfecte

    Antibodies to Variant Surface Antigens of Plasmodium falciparum –Infected Erythrocytes Are Associated with Protection from Treatment Failure and the Development of Anemia in Pregnancy

    Get PDF
    In pregnancy associated malaria (PAM), Plasmodium falciparum infected erythrocytes (IEs) express variant surface antigens (VSA-PAM) that evade existing immunity and mediate placental sequestration. Antibodies to VSA-PAM develop with gravidity and block placental adhesion or opsonise IEs for phagocytic clearance, protecting women from anemia and low birth weigh

    HIV-1 Inhibits Phagocytosis and Inflammatory Cytokine Responses of Human Monocyte-Derived Macrophages to P. falciparum Infected Erythrocytes

    Get PDF
    HIV-1 infection increases the risk and severity of malaria by poorly defined mechanisms. We investigated the effect of HIV-1Ba-L infection of monocyte-derived macrophages (MDM) on phagocytosis of opsonised P. falciparum infected erythrocytes (IE) and subsequent proinflammatory cytokine secretion. Compared to mock-infected MDM, HIV-1 infection significantly inhibited phagocytosis of IE (median (IQR) (10 (0–28) versus (34 (27–108); IE internalised/100 MDM; p = 0.001) and decreased secretion of IL-6 (1,116 (352–3,387) versus 1,552 (889–6,331); pg/mL; p = 0.0078) and IL-1β (16 (7–21) versus 33 (27–65); pg/mL; p = 0.0078). Thus inadequate phagocytosis and cytokine production may contribute to impaired control of malaria in HIV-1 infected individuals

    Injecting drug use and hepatitis C virus infection independently increase biomarkers of inflammatory disease risk which are incompletely restored by curative direct-acting antiviral therapy

    Get PDF
    BackgroundHepatitis C virus (HCV) infections are more prevalent in people who inject drugs (PWID) who often experience additional health risks. HCV induces inflammation and immune alterations that contribute to hepatic and non-hepatic morbidities. It remains unclear whether curative direct acting antiviral (DAA) therapy completely reverses immune alterations in PWID.MethodsPlasma biomarkers of immune activation associated with chronic disease risk were measured in HCV-seronegative (n=24) and HCV RNA+ (n=32) PWID at baseline and longitudinally after DAA therapy. Adjusted generalised estimating equations were used to assess longitudinal changes in biomarker levels. Comparisons between community controls (n=29) and HCV-seronegative PWID were made using adjusted multiple regression modelling.ResultsHCV-seronegative PWID exhibited significantly increased levels of inflammatory biomarkers including soluble (s) TNF-RII, IL-6, sCD14 and sCD163 and the diabetes index HbA1c as compared to community controls. CXCL10, sTNF-RII, vascular cell adhesion molecule-1 and lipopolysaccharide binding protein (LBP) were additionally elevated in PWID with viremic HCV infection as compared to HCV- PWID. Whilst curative DAA therapy reversed some biomarkers, others including LBP and sTNF-RII remained elevated 48 weeks after HCV cure.ConclusionElevated levels of inflammatory and chronic disease biomarkers in PWID suggest an increased risk of chronic morbidities such as diabetes and cardiovascular disease. HCV infection in PWID poses an additional disease burden, amplified by the incomplete reversal of immune dysfunction following DAA therapy. These findings highlight the need for heightened clinical surveillance of PWID for chronic inflammatory diseases, particularly those with a history of HCV infection

    HIV integration and the establishment of latency in CCL19-treated resting CD4(+) T cells require activation of NF-κB

    Get PDF
    BACKGROUND: Eradication of HIV cannot be achieved with combination antiretroviral therapy (cART) because of the persistence of long-lived latently infected resting memory CD4(+) T cells. We previously reported that HIV latency could be established in resting CD4(+) T cells in the presence of the chemokine CCL19. To define how CCL19 facilitated the establishment of latent HIV infection, the role of chemokine receptor signalling was explored. RESULTS: In resting CD4(+) T cells, CCL19 induced phosphorylation of RAC-alpha serine/threonine-protein kinase (Akt), nuclear factor kappa B (NF-κB), extracellular-signal-regulated kinase (ERK) and p38. Inhibition of the phosphoinositol-3-kinase (PI3K) and Ras/Raf/Mitogen-activated protein kinase/ERK kinase (MEK)/ERK signalling pathways inhibited HIV integration, without significant reduction in HIV nuclear entry (measured by Alu-LTR and 2-LTR circle qPCR respectively). Inhibiting activation of MEK1/ERK1/2, c-Jun N-terminal kinase (JNK), activating protein-1 (AP-1) and NF-κB, but not p38, also inhibited HIV integration. We also show that HIV integrases interact with Pin1 in CCL19-treated CD4(+) T cells and inhibition of JNK markedly reduced this interaction, suggesting that CCL19 treatment provided sufficient signals to protect HIV integrase from degradation via the proteasome pathway. Infection of CCL19-treated resting CD4(+) T cells with mutant strains of HIV, lacking NF-κB binding sites in the HIV long terminal repeat (LTR) compared to infection with wild type virus, led to a significant reduction in integration by up to 40-fold (range 1-115.4, p = 0.03). This was in contrast to only a modest reduction of 5-fold (range 1.7-11, p > 0.05) in fully activated CD4(+) T cells infected with the same mutants. Finally, we demonstrated significant differences in integration sites following HIV infection of unactivated, CCL19-treated, and fully activated CD4(+) T cells. CONCLUSIONS: HIV integration in CCL19-treated resting CD4(+) T cells depends on NF-κB signalling and increases the stability of HIV integrase, which allow subsequent integration and establishment of latency. These findings have implications for strategies needed to prevent the establishment, and potentially reverse, latent infection

    Differential Expression of CD163 on Monocyte Subsets in Healthy and HIV-1 Infected Individuals

    Get PDF
    CD163, a haptoglobin-hemoglobin (Hp-Hb) scavenger receptor, expressed by monocytes and macrophages, is important in resolution of inflammation. Age-related non-AIDS co-morbidities in HIV-infected individuals, particularly dementia and cardiovascular disease, result in part from effects of HIV-1 infection on monocyte and macrophage biology. CD163 co-expression on CD14+CD16++ monocytes has been proposed as a useful biomarker for HIV-1 disease progression and the presence of HIV associated dementia. Here we investigated CD163 expression on monocyte subsets ex vivo, on cultured macrophages, and soluble in plasma, in the setting of HIV-1 infection. Whole blood immunophenotyping revealed CD163 expression on CD14++CD16- monocytes but not on CD14+CD16++ monocytes (P = 0.004), supported by CD163 mRNA levels. Incubation with M-CSF induced CD163 protein expression on CD14+CD16++ monocytes to the same extent as CD14++CD16− monocytes. CD163 expression on CD14++CD16+ monocytes from HIV-infected subjects was significantly higher than from uninfected individuals, with a trend towards increased expression on CD14++CD16− monocytes (P = 0.019 and 0.069 respectively), which is accounted for by HIV-1 therapy including protease inhibitors. Shedding of CD163 was shown to predominantly occur from the CD14++CD16− subset after Ficoll isolation and LPS stimulation. Soluble CD163 concentration in plasma from HIV-1 infected donors was similar to HIV-1 uninfected donors. Monocyte CD163 expression in HIV-1 infected patients showed a complicated relationship with classical measures of disease progression. Our findings clarify technical issues regarding CD163 expression on monocyte subsets and further elucidates its role in HIV-associated inflammation by demonstrating that CD163 is readily lost from CD14++CD16− monocytes and induced in pro-inflammatory CD14+CD16++ monocytes by M-CSF. Our data show that all monocyte subsets are potentially capable of differentiating into CD163-expressing anti-inflammatory macrophages given appropriate stimuli. Levels of CD163 expression on monocytes may be a potential biomarker reflecting efforts by the immune system to resolve immune activation and inflammation in HIV-infected individuals

    Differential Expression of CD163 on Monocyte Subsets in Healthy and HIV-1 Infected Individuals

    Get PDF
    CD163, a haptoglobin-hemoglobin (Hp-Hb) scavenger receptor, expressed by monocytes and macrophages, is important in resolution of inflammation. Age-related non-AIDS co-morbidities in HIV-infected individuals, particularly dementia and cardiovascular disease, result in part from effects of HIV-1 infection on monocyte and macrophage biology. CD163 co-expression on CD14+CD16++ monocytes has been proposed as a useful biomarker for HIV-1 disease progression and the presence of HIV associated dementia. Here we investigated CD163 expression on monocyte subsets ex vivo, on cultured macrophages, and soluble in plasma, in the setting of HIV-1 infection. Whole blood immunophenotyping revealed CD163 expression on CD14++CD16- monocytes but not on CD14+CD16++ monocytes (P = 0.004), supported by CD163 mRNA levels. Incubation with M-CSF induced CD163 protein expression on CD14+CD16++ monocytes to the same extent as CD14++CD16− monocytes. CD163 expression on CD14++CD16+ monocytes from HIV-infected subjects was significantly higher than from uninfected individuals, with a trend towards increased expression on CD14++CD16− monocytes (P = 0.019 and 0.069 respectively), which is accounted for by HIV-1 therapy including protease inhibitors. Shedding of CD163 was shown to predominantly occur from the CD14++CD16− subset after Ficoll isolation and LPS stimulation. Soluble CD163 concentration in plasma from HIV-1 infected donors was similar to HIV-1 uninfected donors. Monocyte CD163 expression in HIV-1 infected patients showed a complicated relationship with classical measures of disease progression. Our findings clarify technical issues regarding CD163 expression on monocyte subsets and further elucidates its role in HIV-associated inflammation by demonstrating that CD163 is readily lost from CD14++CD16− monocytes and induced in pro-inflammatory CD14+CD16++ monocytes by M-CSF. Our data show that all monocyte subsets are potentially capable of differentiating into CD163-expressing anti-inflammatory macrophages given appropriate stimuli. Levels of CD163 expression on monocytes may be a potential biomarker reflecting efforts by the immune system to resolve immune activation and inflammation in HIV-infected individuals

    Sulfur trioxide formation/emissions in coal‐fired air‐ and oxy‐fuel combustion processes: a review

    Get PDF
    In oxy‐fuel combustion, fuel is burned using oxygen together with recycled flue gas, which is needed to control the combustion temperature. This leads to higher concentrations of sulfur dioxide and sulfur trioxide in the recycled gas, which can result in the formation of sulfuric acid and enhanced corrosion. Current experimental data on SO3 formation, reaction mechanisms, and mathematical modelling have indicated significant differences in SO3 formation between air‐ and oxy‐fuel combustion for both the wet and dry flue gas recycle options. This paper provides an extensive review of sulfur trioxide formation in air‐ and oxy‐fuel combustion environments, with an emphasis on coal‐fired systems. The first part summarizes recent findings on oxy‐fuel combustion experiments, as they affect sulfur trioxide formation. In the second part, the review focuses on sulfur trioxide formation mechanisms, and the influence of catalysis on sulfur trioxide formation. Finally, the current methods for measuring sulfur trioxide concentration are also reviewed along with the major difficulties associated with those measurements using data available from both bench‐ and pilot‐scale units

    Human Immunodeficiency Virus Type 1 Infection Inhibits Granulocyte-Macrophage Colony-Stimulating Factor-Induced Activation of STAT5A in Human Monocyte-Derived Macrophages

    No full text
    Human immunodeficiency virus type 1 (HIV-1) infects cells of the monocyte/macrophage lineage. While infection of macrophages by HIV-1 is generally not cytopathic, it does impair macrophage function. In this study, we examined the effect of HIV-1 infection on intracellular signaling in human monocyte-derived macrophages (MDM) stimulated with the growth factor granulocyte-macrophage colony-stimulating factor (GM-CSF). GM-CSF is an important growth factor for cells of both the macrophage and granulocyte lineages and enhances effector functions of these cells via the heterodimeric GM-CSF receptor (GM-CSFR). A major pathway which mediates the effects of GM-CSF on macrophages involves activation of the latent transcription factor STAT5A via a Janus kinase 2 (JAK2)-dependent pathway. We demonstrate that GM-CSF-induced activation of STAT5A is inhibited in MDM after infection in vitro with the laboratory-adapted R5 strain of HIV-1, HIV-1(Ba-L), but not after infection with adenovirus. HIV-1 infection of MDM did not decrease the STAT5A or JAK2 mRNA level or STAT5A protein level or result in increased constitutive activation of STAT5A. Surface expression of either the α-chain or common β(c)-chain of GM-CSFR was also unaffected. We conclude that HIV-1 inhibits GM-CSF activation of STAT5A without affecting expression of the known components of the signaling pathway. These data provide further evidence of disruption of cellular signaling pathways after HIV-1 infection, which may contribute to immune dysfunction and HIV-1 pathogenesis
    corecore