9 research outputs found

    Direct Imaging of Electron Orbitals with a Scanning Transmission Electron Microscope

    Full text link
    Recent studies of secondary electron (SE) emission in scanning transmission electron microscopes suggest that material's properties such as electrical conductivity, connectivity, and work function can be probed with atomic scale resolution using a technique known as secondary electron e-beam-induced current (SEEBIC). Here, we apply the SEEBIC imaging technique to a stacked 2D heterostructure device to reveal the spatially resolved electron orbital ionization cross section of an encapsulated WSe2 layer. We find that the double Se lattice site shows higher emission than the W site, which is at odds with first-principles modelling of ionization of an isolated WSe2 cluster. These results illustrate that atomic level SEEBIC contrast within a single material is possible and that an enhanced understanding of atomic scale SE emission is required to account for the observed contrast. In turn, this suggests that subtle information about interlayer bonding and the effect on electron orbitals can be directly revealed with this technique

    Nanoscale confinement and control of excitonic complexes in a monolayer WSe2

    Full text link
    Nanoscale control and observation of photophysical processes in semiconductors is critical for basic understanding and applications from optoelectronics to quantum information processing. In particular, there are open questions and opportunities in controlling excitonic complexes in two-dimensional materials such as excitons, trions or biexcitons. However, neither conventional diffraction-limited optical spectroscopy nor lithography-limited electric control provides a proper tool to investigate these quasiparticles at the nanometer-scale at cryogenic temperature. Here, we introduce a cryogenic capacitive confocal optical microscope (C3OM) as a tool to study quasiparticle dynamics at the nanometer scale. Using a conductive atomic force microscope (AFM) tip as a gate electrode, we can modulate the electronic doping at the nanometer scale in WSe2 at 4K. This tool allows us to modulate with nanometer-scale confinement the exciton and trion peaks, as well a distinct photoluminescence line associated with a larger excitonic complex that exhibits distinctive nonlinear optical response. Our results demonstrate nanoscale confinement and spectroscopy of exciton complexes at arbitrary positions, which should prove an important tool for quantitative understanding of complex optoelectronic properties in semiconductors as well as for applications ranging from quantum spin liquids to superresolution measurements to control of quantum emitters

    Electrical Tuning of Neutral and Charged Excitons with 1-nm Gate

    Full text link
    Electrical control of individual spins and photons in solids is key for quantum technologies, but scaling down to small, static systems remains challenging. Here, we demonstrate nanoscale electrical tuning of neutral and charged excitons in monolayer WSe2 using 1-nm carbon nanotube gates. Electrostatic simulations reveal a confinement radius below 15 nm, reaching the exciton Bohr radius limit for few-layer dielectric spacing. In situ photoluminescence spectroscopy shows gate-controlled conversion between neutral excitons, negatively charged trions, and biexcitons at 4 K. Important for quantum information processing applications, our measurements indicate gating of a local 2D electron gas in the WSe2 layer, coupled to photons via trion transitions with binding energies exceeding 20 meV. The ability to deterministically tune and address quantum emitters using nanoscale gates provides a pathway towards large-scale quantum optoelectronic circuits and spin-photon interfaces for quantum networking.Comment: 21 pages, 11 figure

    Direct imaging of electron density with a scanning transmission electron microscope

    No full text
    Abstract Recent studies of secondary electron (SE) emission in scanning transmission electron microscopes suggest that material’s properties such as electrical conductivity, connectivity, and work function can be probed with atomic scale resolution using a technique known as secondary electron e-beam-induced current (SEEBIC). Here, we apply the SEEBIC imaging technique to a stacked 2D heterostructure device to reveal the spatially resolved electron density of an encapsulated WSe2 layer. We find that the double Se lattice site shows higher emission than the W site, which is at odds with first-principles modelling of valence ionization of an isolated WSe2 cluster. These results illustrate that atomic level SEEBIC contrast within a single material is possible and that an enhanced understanding of atomic scale SE emission is required to account for the observed contrast. In turn, this suggests that, in the future, subtle information about interlayer bonding and the effect on electron orbitals could be directly revealed with this technique

    All-inorganic perovskite nanocrystal scintillators

    No full text
    The rising demand for radiation detection materials in many applications has led to extensive research on scintillators(1-3). The ability of a scintillator to absorb high-energy (kiloelectronvolt-scale) X-ray photons and convert the absorbed energy into low-energy visible photons is critical for applications in radiation exposure monitoring, security inspection, X-ray astronomy and medical radiography(4,5). However, conventional scintillators are generally synthesized by crystallization at a high temperature and their radioluminescence is difficult to tune across the visible spectrum. Here we describe experimental investigations of a series of all-inorganic perovskite nanocrystals comprising caesium and lead atoms and their response to X-ray irradiation. These nanocrystal scintillators exhibit strong X-ray absorption and intense radioluminescence at visible wavelengths. Unlike bulk inorganic scintillators, these perovskite nanomaterials are solution-processable at a relatively low temperature and can generate X-ray-induced emissions that are easily tunable across the visible spectrum by tailoring the anionic component of colloidal precursors during their synthesis. These features allow the fabrication of flexible and highly sensitive X-ray detectors with a detection limit of 13 nanograys per second, which is about 400 times lower than typical medical imaging doses. We show that these colour-tunable perovskite nanocrystal scintillators can provide a convenient visualization tool for X-ray radiography, as the associated image can be directly recorded by standard digital cameras. We also demonstrate their direct integration with commercial flat-panel imagers and their utility in examining electronic circuit boards under low-dose X-ray illumination

    Inside Perovskites: Quantum Luminescence from Bulk Cs<sub>4</sub>PbBr<sub>6</sub> Single Crystals

    No full text
    Zero-dimensional perovskite-related structures (0D-PRS) are a new frontier of perovskite-based materials. 0D-PRS, commonly synthesized in powder form, manifest distinctive optical properties such as strong photoluminescence (PL), narrow emission line width, and high exciton binding energy. These properties make 0D-PRS compelling for several types of optoelectronic applications, including phosphor screens and electroluminescent devices. However, it would not be possible to rationally design the chemistry and structure of these materials, without revealing the origins of their optical behavior, which is contradictory to the well-studied APbX<sub>3</sub> perovskites. In this work, we synthesize single crystals of Cs<sub>4</sub>PbBr<sub>6</sub> 0D-PRS, and investigated the origins of their unique optical and electronic properties. The crystals exhibit a PL quantum yield higher than 40%, the highest reported for perovskite-based single crystals. Time-resolved and temperature dependent PL studies, supported by DFT calculations, and structural analysis, elucidate an emissive behavior reminiscent of a quantum confined structure rather than a typical bulk perovskite material
    corecore