749 research outputs found
An experimental comparative study for interactive evolutionary computation problems
Proceeding of: EvoWorkshops 2006: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoINTERACTION, EvoMUSART, and EvoSTOC, Budapest, Hungary, April 10-12, 2006This paper presents an objective experimental comparative study between four algorithms: the Genetic Algorithm, the Fitness Prediction Genetic Algorithm, the Population Based Incremental Learning algorithm and the purposed method based on the Chromosome Appearance Probability Matrix. The comparative is done with a non subjective evaluation function. The main objective is to validate the efficiency of several methods in Interactive Evolutionary Computation environments. The most important constraint of working within those environments is the user interaction, which affects the results adding time restrictions for the experimentation stage and subjectivity to the validation. The experiments done in this paper replace user interaction with several approaches avoiding user limitations. So far, the results show the efficiency of the purposed algorithm in terms of quality of solutions and convergence speed, two known keys to decrease the user fatigue.This article has been financed by the Spanish founded research MCyT project OPLINK, Ref: TIN2006-08818-C04-02
Genetic algorithms for the generation of models with micropopulations
Proceedings of: EvoWorkshops 2003: EvoBIO, EvoCOP, EvoIASP, EvoMUSART, EvoROB, and EvoSTIM Essex, UK, April 14–16, 2003The present article puts forward a method for an interactive model generation through the use of Genetic Algorithms applied to small populations. Micropopulations actually worsen the problem of the premature convergence of the algorithm, since genetic diversity is very limited. In addition, some key factors, which modify the changing likelihood of alleles, cause the likelihood of premature convergence to decrease. The present technique has been applied to the design of 3D models, starting from generic and standard pieces, using objective searches and searches with no defined objective
Learning sequences of rules using classifier systems with tags
IEEE International Conference on Systems, Man, and Cybernetics. Tokyo, 12-15 October 1999.The objective of this paper was to obtain an encoding structure that would allow the genetic evolution of rules in such a manner that the number of rules and relationship in a classifier system (CS) would be learnt in the evolution process. For this purpose, an area that allows the definition of rule groups has been entered into the condition and message part of the encoded rules. This area is called internal tag. This term was coined because the system has some similarities with natural processes that take place in certain animal species, where the existence of tags allows them to communicate and recognize each other. Such CS is called a tag classifier system (TCS). The TCS has been tested in the game of draughts and compared with the classical CS. The results show an improving of the CS performance
Applying classifier systems to learn the reactions in mobile robots
The navigation problem involves how to reach a goal avoiding obstacles in dynamic environments. This problem can be faced considering reactions and sequences of actions. Classifier systems (CSs) have proven their ability of continuous learning, however, they have some problems in reactive systems. A modified CS, namely a reactive classifier system (RCS), is proposed to overcome those problems. Two special mechanisms are included in the RCS: the non-existence of internal cycles inside the CS (no internal cycles) and the fusion of environmental message with the messages posted to the message list in the previous instant (generation list through fusion). These mechanisms allow the learning of both reactions and sequences of actions. This learning process involves two main tasks: first, discriminate between rules and, second, the discovery of new rules to obtain a successful operation in dynamic environments. DiVerent experiments have been carried out using a mini-robot Khepera to find a generalized solution. The results show the ability of the system for continuous learning and adaptation to new situations.Publicad
RTCS: a reactive with tags classifier system
In this work, a new Classifier System is proposed (CS). The system, a Reactive with Tags Classifier System (RTCS), is able to take into account environmental situations in intermediate decisions. CSs are special production systems, where conditions and actions are codified in order to learn new rules by means of Genetic Algorithms (GA). The RTCS has been designed to generate sequences of actions like the traditional classifier systems, but RTCS also has the capability of chaining rules among different time instants and reacting to new environmental situations, considering the last environmental situation to take a decision. In addition to the capability to react and generate sequences of actions, the design of a new rule codification allows the evolution of groups of specialized rules. This new codification is based on the inclusion of several bits, named tags, in conditions and actions, which evolve by means of GA. RTCS has been tested in robotic navigation. Results show the suitability of this approximation to the navigation problem and the coherence of tag values in rules classification.Publicad
Knowledge acquisition including tags in a classifier system
Congress on Evolutionary Computation. Washington, DC, 6-9 July 1999.One of the major problems related to classifier systems is the loss of rules. This loss is caused by the genetic algorithm being applied on the entire population of rules jointly. Obviously, the genetic operators discriminate rules by the strength value, such that evolution favours the generation of the stronger rules. When the learning system works in an environment in which it is possible to generate a complete training set, the strength of the rules of the CS will reflect the relative relationship between rules satisfactorily and, therefore, the application of the genetic algorithm will produce the desired effects. However, when the learning process presents individual cases and allows the system to learn gradually from these cases, each learning interval with a set of individual cases can lead the strength to be distributed in favour of a given type of rules that would in turn be favoured by the genetic algorithm. Basically, the idea is to divide rules into groups such that they are forced to remain in the system. This contribution is a method of learning that allows similar knowledge to be grouped. A field in which knowledge-based systems researchers have done a lot of work is concept classification and the relationships that are established between these concepts in the stage of knowledge conceptualization for later formalization. This job of classifying and searching relationships is performed in the proposed classifier systems by means of a mechanism. Tags, that allows the classification and the relationships to be discovered without the need for expert knowledge
Reactive with tags classifier system applied to real robot navigation
7th IEEE International Conference on Emerging Technologies and Factory Automation. Barcelona, 18-21 October 1999.A reactive with tags classifier system (RTCS) is a special classifier system. This system combines the execution capabilities of symbolic systems and the learning capabilities of genetic algorithms. A RTCS is able to learn symbolic rules that allow to generate sequence of actions, chaining rules among different time instants, and react to new environmental situations, considering the last environmental situation to take a decision. The capacity of RTCS to learn good rules has been prove in robotics navigation problem. Results show the suitability of this approximation to the navigation problem and the coherence of extracted rules
Generalized Planning with Positive and Negative Examples
Generalized planning aims at computing an algorithm-like structure
(generalized plan) that solves a set of multiple planning instances. In this
paper we define negative examples for generalized planning as planning
instances that must not be solved by a generalized plan. With this regard the
paper extends the notion of validation of a generalized plan as the problem of
verifying that a given generalized plan solves the set of input positives
instances while it fails to solve a given input set of negative examples. This
notion of plan validation allows us to define quantitative metrics to asses the
generalization capacity of generalized plans. The paper also shows how to
incorporate this new notion of plan validation into a compilation for plan
synthesis that takes both positive and negative instances as input. Experiments
show that incorporating negative examples can accelerate plan synthesis in
several domains and leverage quantitative metrics to evaluate the
generalization capacity of the synthesized plans.Comment: Accepted at AAAI-20 (oral presentation
- …