91 research outputs found

    High-fat diet feeding alters metabolic response to fasting/non fasting conditions. Effect on caveolin expression and insulin signalling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The effect of food intake on caveolin expression in relation to insulin signalling was studied in skeletal muscle and adipocytes from retroperitoneal (RP) and subcutaneous (SC) adipose tissue, comparing fasted (F) to not fasted (NF) rats that had been fed a control or high-fat (HF) diet for 72 days.</p> <p>Methods</p> <p>Serum glucose was analysed enzymatically and insulin and leptin by ELISA. Caveolins and insulin signalling intermediaries (IR, IRS-1 and 2 and GLUT4) were determined by RT-PCR and western blotting. Caveolin and IR phosphorylation was measured by immunoprecipitation. Data were analysed with Mann-Whitney U test.</p> <p>Results</p> <p>High-fat fed animals showed metabolic alterations and developed obesity and insulin resistance. In skeletal muscle, food intake (NF) induced activation of IR and increased expression of IRS-2 in control animals with normal metabolic response. HF animals became overweight, hyperglycaemic, hyperinsulinemic, hyperleptinemic and showed insulin resistance. In skeletal muscle of these animals, food intake (NF) also induced IRS-2 expression together with IR, although this was not active. Caveolin 3 expression in this tissue was increased by food intake (NF) in animals fed either diet. In RP adipocytes of control animals, food intake (NF) decreased IR and IRS-2 expression but increased that of GLUT4. A similar but less intense response was found in SC adipocytes. Food intake (NF) did not change caveolin expression in RP adipocytes with either diet, but in SC adipocytes of HF animals a reduction was observed. Food intake (NF) decreased caveolin-1 phosphorylation in RP but increased it in SC adipocytes of control animals, whereas it increased caveolin-2 phosphorylation in both types of adipocytes independently of the diet.</p> <p>Conclusions</p> <p>Animals fed a control-diet show a normal response to food intake (NF), with activation of the insulin signalling pathway but without appreciable changes in caveolin expression, except a small increase of caveolin-3 in muscle. Animals fed a high-fat diet develop metabolic changes that result in insulin signalling impairment. In these animals, caveolin expression in muscle and adipocytes seems to be regulated independently of insulin signalling.</p

    Interplay of early-life nutritional programming on obesity, inflammation and epigenetic outcomes

    Get PDF
    The huge health burden accompanying obesity is not only attributable to inadequate dietary and sedentary lifestyle habits, since a predisposing genetic make-up and other putative determinants concerning easier weight gain and fat deposition have been reported. Thus, several investigations aiming to understand energy metabolism and body composition maintenance have been performed considering the participation of perinatal nutritional programming and epigenetic processes as well as inflammation phenomena. The Developmental Origins of Health and Disease hypothesis and inheritance-oriented investigations concerning gene–nutrient interactions on energy homoeostasis and metabolic functions have suggested that inflammation could be not only a comorbidity of obesity but also a cause. There are several examples about the role of nutritional interventions in pregnancy and lactation, such as energetic deprivation, protein restriction and excess fat, which determine a cluster of disorders affecting energy efficiency in the offspring as well as different metabolic pathways, which are mediated by epigenetics encompassing the chromatin information encrypted by DNA methylation patterns, histone covalent modifications and non-coding RNA or microRNA. Epigenetic mechanisms may be boosted or impaired by dietary and environmental factors in the mother, intergenerationally or transiently transmitted, and could be involved in the obesity and inflammation susceptibility in the offspring. The aims currently pursued are the early identification of epigenetic biomarkers concerned in individual's disease susceptibility and the description of protocols for tailored dietary treatments/advice to counterbalance adverse epigenomic events. These approaches will allow diagnosis and prognosis implementation and facilitate therapeutic strategies in a personalised ‘epigenomically modelled’ manner to combat obesity and inflammation

    Rheumatoid arthritis miRNA biomarker detection by means of LMR based fiber-optic biosensor

    Get PDF
    Development of miRNA optical biosensors for disease diagnosis and monitoring has acquired relevance in recent years, due to the clinical importance of miRNA and the inherent advantages of optical sensors. Here, we present the utilization of a fiber optic sensor based on Lossy Mode Resonance (LMR) for the detection of miRNA hsa-miR-223, a promising biomarker for the diagnosis of rheumatoid arthritis (RA).This research was funded by the Spanish Agencia Estatal de Investigación (AEI) (PID2019-106231RB-I00), the Public University of Navarra (PJUPNA26), and the Spanish Ministry of Universities (FPU18/03087). In addition, this project has received funding from the ATTRACT call financed by the European Union's Horizon 2020 research and innovation program under grant agreement No 777222

    Fat-to-glucose interconversion by hydrodynamic transfer of two glyoxylate cycle enzyme genes

    Get PDF
    The glyoxylate cycle, which is well characterized in higher plants and some microorganisms but not in vertebrates, is able to bypass the citric acid cycle to achieve fat-to-carbohydrate interconversion. In this context, the hydrodynamic transfer of two glyoxylate cycle enzymes, such as isocytrate lyase (ICL) and malate synthase (MS), could accomplish the shift of using fat for the synthesis of glucose. Therefore, 20 mice weighing 23.37 +/- 0.96 g were hydrodinamically gene transferred by administering into the tail vein a bolus with ICL and MS. After 36 hours, body weight, plasma glucose, respiratory quotient and energy expenditure were measured. The respiratory quotient was increased by gene transfer, which suggests that a higher carbohydrate/lipid ratio is oxidized in such animals. This application could help, if adequate protocols are designed, to induce fat utilization for glucose synthesis, which might be eventually useful to reduce body fat depots in situations of obesity and diabete

    Dietary supplementation with methyl donors reduces fatty liver and modifies the fatty acid synthase DNA methylation profile in rats fed an obesogenic diet

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is one of the first hepatic manifestations of metabolic syndrome, whose progression can lead to cirrhosis and hepatic carcinoma. Interestingly, methyl donor supplementation could improve obesogenic diet-induced hepatic triglyceride accumulation. The aim of this research is to describe methyl donor effects on a high-fat-sucrose (HFS) diet in both sexes and epigenetic changes induced on fatty acid synthase (FASN) promoter methylation pattern as well as gene expression of NAFLD key metabolic genes. Twenty-four male and 28 female Wistar rats were assigned to three dietary groups: control, HFS, and HFS supplemented with methyl donors (choline, betaine, vitamin B12, and folic acid). After 8 weeks of treatment, somatic, biochemical, mRNA, and epigenetic measurements were performed. Rats fed the HFS diet presented an overweight phenotype and alterations in plasma biochemical measurements. Methyl donor supplementation reverted the HFS-diet-induced hepatic triglyceride accumulation. Analysis of FASN promoter cytosine methylation showed changes in both sexes due to the obesogenic diet at -1,096, -780, -778, and -774 CpG sites with respect to the transcriptional start site. Methyl donor supplementation modified DNA methylation at -852, -833, -829, -743, and -733 CpGs depending on the sex. RT-PCR analysis confirmed that FASN expression tended to be altered in males. Our findings reinforce the hypothesis that methyl donor supplementation can prevent hepatic triglyceride accumulation induced by obesogenic diets in both sexes. Changes in liver gene expression profile and epigenetic-mediated mechanisms related to FASN DNA hypermethylation could be involved in methyl donor-induced NAFLD improvement

    Natural inhibitors of pancreatic lipase as new players in obesity treatment.

    Get PDF
    Obesity is a multifactorial disease characterized by an excessive weight for height due to an enlarged fat deposition such as adipose tissue, which is attributed to a higher calorie intake than the energy expenditure. The key strategy to combat obesity is to prevent chronic positive impairments in the energy equation. However, it is often difficult to maintain energy balance, because many available foods are high-energy yielding, which is usually accompanied by low levels of physical activity. The pharmaceutical industry has invested many efforts in producing antiobesity drugs; but only a lipid digestion inhibitor obtained from an actinobacterium is currently approved and authorized in Europe for obesity treatment. This compound inhibits the activity of pancreatic lipase, which is one of the enzymes involved in fat digestion. In a similar way, hundreds of extracts are currently being isolated from plants, fungi, algae, or bacteria and screened for their potential inhibition of pancreatic lipase activity. Among them, extracts isolated from common foodstuffs such as tea, soybean, ginseng, yerba mate, peanut, apple, or grapevine have been reported. Some of them are polyphenols and saponins with an inhibitory effect on pancreatic lipase activity, which could be applied in the management of the obesity epidemic

    High-fat diet feeding alters metabolic response to fasting/non fasting conditions. Effect on caveolin expression and insulin signalling.

    Get PDF
    BACKGROUND: The effect of food intake on caveolin expression in relation to insulin signalling was studied in skeletal muscle and adipocytes from retroperitoneal (RP) and subcutaneous (SC) adipose tissue, comparing fasted (F) to not fasted (NF) rats that had been fed a control or high-fat (HF) diet for 72 days. METHODS: Serum glucose was analysed enzymatically and insulin and leptin by ELISA. Caveolins and insulin signalling intermediaries (IR, IRS-1 and 2 and GLUT4) were determined by RT-PCR and western blotting. Caveolin and IR phosphorylation was measured by immunoprecipitation. Data were analysed with Mann-Whitney U test. RESULTS: High-fat fed animals showed metabolic alterations and developed obesity and insulin resistance. In skeletal muscle, food intake (NF) induced activation of IR and increased expression of IRS-2 in control animals with normal metabolic response. HF animals became overweight, hyperglycaemic, hyperinsulinemic, hyperleptinemic and showed insulin resistance. In skeletal muscle of these animals, food intake (NF) also induced IRS-2 expression together with IR, although this was not active. Caveolin 3 expression in this tissue was increased by food intake (NF) in animals fed either diet. In RP adipocytes of control animals, food intake (NF) decreased IR and IRS-2 expression but increased that of GLUT4. A similar but less intense response was found in SC adipocytes. Food intake (NF) did not change caveolin expression in RP adipocytes with either diet, but in SC adipocytes of HF animals a reduction was observed. Food intake (NF) decreased caveolin-1 phosphorylation in RP but increased it in SC adipocytes of control animals, whereas it increased caveolin-2 phosphorylation in both types of adipocytes independently of the diet. CONCLUSIONS: Animals fed a control-diet show a normal response to food intake (NF), with activation of the insulin signalling pathway but without appreciable changes in caveolin expression, except a small increase of caveolin-3 in muscle. Animals fed a high-fat diet develop metabolic changes that result in insulin signalling impairment. In these animals, caveolin expression in muscle and adipocytes seems to be regulated independently of insulin signalling

    Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic alpha amylase

    Get PDF
    Introduction: The increasing prevalence of type 2 diabetes mellitus and the negative clinical outcomes observed with the commercially available anti-diabetic drugs have led to the investigation of new therapeutic approaches focused on controlling postprandrial glucose levels. The use of carbohydrate digestive enzyme inhibitors from natural resources could be a possible strategy to block dietary carbohydrate absorption with less adverse effects than synthetic drugs. Areas covered: This review covers the latest evidence regarding in vitro and in vivo studies in relation to pancreatic alpha-amylase inhibitors of plant origin, and presents bioactive compounds of phenolic nature that exhibit anti-amylase activity. Expert opinion: Pancreatic alpha-amylase inhibitors from traditional plant extracts are a promising tool for diabetes treatment. Many studies have confirmed the alpha-amylase inhibitory activity of plants and their bioactive compounds in vitro, but few studies corroborate these findings in rodents and very few in humans. Thus, despite some encouraging results, more research is required for developing a valuable anti-diabetic therapy using pancreatic alpha-amylase inhibitors of plant origin
    corecore