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High-fat diet feeding alters metabolic response to
fasting/non fasting conditions. Effect on caveolin
expression and insulin signalling
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Abstract

Background: The effect of food intake on caveolin expression in relation to insulin signalling was studied in
skeletal muscle and adipocytes from retroperitoneal (RP) and subcutaneous (SC) adipose tissue, comparing fasted
(F) to not fasted (NF) rats that had been fed a control or high-fat (HF) diet for 72 days.

Methods: Serum glucose was analysed enzymatically and insulin and leptin by ELISA. Caveolins and insulin
signalling intermediaries (IR, IRS-1 and 2 and GLUT4) were determined by RT-PCR and western blotting. Caveolin
and IR phosphorylation was measured by immunoprecipitation. Data were analysed with Mann-Whitney U test.

Results: High-fat fed animals showed metabolic alterations and developed obesity and insulin resistance. In
skeletal muscle, food intake (NF) induced activation of IR and increased expression of IRS-2 in control animals with
normal metabolic response. HF animals became overweight, hyperglycaemic, hyperinsulinemic, hyperleptinemic
and showed insulin resistance. In skeletal muscle of these animals, food intake (NF) also induced IRS-2 expression
together with IR, although this was not active. Caveolin 3 expression in this tissue was increased by food intake
(NF) in animals fed either diet. In RP adipocytes of control animals, food intake (NF) decreased IR and IRS-2
expression but increased that of GLUT4. A similar but less intense response was found in SC adipocytes. Food
intake (NF) did not change caveolin expression in RP adipocytes with either diet, but in SC adipocytes of HF
animals a reduction was observed. Food intake (NF) decreased caveolin-1 phosphorylation in RP but increased it in
SC adipocytes of control animals, whereas it increased caveolin-2 phosphorylation in both types of adipocytes
independently of the diet.

Conclusions: Animals fed a control-diet show a normal response to food intake (NF), with activation of the insulin
signalling pathway but without appreciable changes in caveolin expression, except a small increase of caveolin-3 in
muscle. Animals fed a high-fat diet develop metabolic changes that result in insulin signalling impairment. In these
animals, caveolin expression in muscle and adipocytes seems to be regulated independently of insulin signalling.

Background
Obesity is a complex multifactorial condition that
results from a combination of environmental (such as
imbalanced eating habits and sedentary lifestyle) and
neuroendocrine factors, coupled to a genetic predisposi-
tion [1]. Different genes have been related to obesity
development, such as the three major isoforms of caveo-
lin, Cav-1, Cav-2 and Cav-3 (18-24 kDa) [2]. Cav-1 is
most abundantly expressed in terminally differentiated

cells such as fibroblasts, epithelial and endothelial cells
and adipocytes, where it is responsible for caveolae for-
mation [3]. Cav-2 is coexpressed with Cav-1, while Cav-
3 is the specific isoform of muscle tissue, although it
has also been found in astrocytes and chondrocytes
[4,5]. These proteins are the main structural compo-
nents of caveolae and interact with signalling molecules
through a characteristic scaffolding domain [6].
Enhanced cellular signalling within caveolae is facilitated
due to the target-rich environment formed by the clus-
tering of receptors and signalling molecules in the
proximity of these membrane structures, thereby per-
mitting a better controlled and more efficient signal
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transduction [7]. Insulin receptor (IR) is among those
that can be located in caveolae and in fact, several stu-
dies have shown that, in adipocytes, Cav-1 is an impor-
tant regulatory element stimulating IR signalling and
linking insulin action to glucose uptake [8].
In obesity-related disorders, such as insulin resistance

and type 2 diabetes, insulin signalling becomes altered,
while adipose tissue develops chronic inflammation and
hypoxia, conditions that affect gene expression through
the associated oxidative stress and reactive oxygen spe-
cies (ROS) production [9]. In regard to this, caveolin
expression is highly dependent on proinflammatory fac-
tors such as TNF-alpha [10], and oxidative stress
induces cellular senescence through activation of the
Cav-1 promoter and upregulation of Cav-1 protein
expression [11].
In addition, the two major targets of insulin action are

skeletal muscle and adipose tissue [12]. White adipose
tissue (WAT) serves as the main site for energy storage
in the form of triglycerides, but also contributes to sys-
temic glucose and lipid regulation acting as an endo-
crine organ [13]. The principal site of glucose uptake
under insulin-stimulated conditions is skeletal muscle,
being considered a primary site for insulin resistance
[14]. An impairment of the initial steps in insulin signal-
ling transduction pathways could contribute to the defi-
ciency in insulin-stimulated glucose uptake in skeletal
muscle, thus resulting in insulin resistance. In fact, dif-
ferent mechanisms have been described in relation to
lipid-induced muscle insulin resistance, including acute
free fatty acid elevation and prolonged lipid accumula-
tion in muscle [15].
In previous studies, our group has demonstrated that

caveolins are time-dependently regulated by diet-
induced obesity [16]. In a late phase, after a prolonged
time feeding on a high-fat diet, insulin resistance
becomes apparent, accompanied by an impairment of
Cav-3 and Cav-1 in skeletal muscle [17], whereas in adi-
pocytes, Cav-1 and Cav-2 expression are increased,
together with an inhibition of insulin signalling interme-
diaries [18].
The purpose of the present study is to deepen into

the understanding of caveolin regulation in conditions
of diet-induced obesity and insulin resistance, and
their relation to insulin signalling in skeletal muscle
and adipocytes. Given that fasting, the usual condition
in animal studies before isolating samples, downregu-
lates insulin secretion and signalling and therefore
would influence caveolin physiology, we have com-
pared for the first time caveolin regulation between
fasted (F) and fed (non-fasted, NF) animals. We have
analysed the response of skeletal muscle and adipo-
cytes isolated from visceral and subcutaneous locations

of lean (C, control) and high-fat (HF) diet-induced
obese, insulin-resistant rats.

Methods
Animals, diets and experimental design
Male Wistar rats (250-300 g) were supplied by the
Applied Pharmacobiology Center (University of Navarra,
Spain) and housed under controlled conditions of tem-
perature (22 ± 2°C), relative humidity (55 ± 10%) and 12
hours light cycle (8 a.m. to 8 p.m.). Sixteen animals were
assigned to two different dietary groups for 72 days. The
control group (C, n = 8) was fed standard laboratory pel-
leted diet (Harlam Iberica, Barcelona, Spain), providing
350 kcal/100 g, with about 10% of the energy as fat, 73%
as carbohydrates and 17% as protein. A second group
(n = 8) was fed a fat-rich cafeteria diet (HF), providing
430 kcal/100 g, with about 59% of the energy as fat, 32%
as carbohydrates and 9% as protein, which was prepared
with pate, chips, chocolate, bacon, biscuits and chow in a
proportion of 2:1:1:1:1:1, as previously reported [19]. Ani-
mals had ad libitum access to food and water during the
treatment. Weight gain and food/water intake were mea-
sured three times per week. Twelve hours before sacrifice
4 animals of each group were fasted (F) by food withdra-
wal (C-F and HF-F), whereas the other 4 were not fasted
(NF), having free access to food (C-NF and HF-NF).
After sacrifice by decapitation, truncal blood was col-
lected and the gastrocnemius muscle and the retroperito-
neal (RP) and subcutaneous (SC) white adipose fat pads
were carefully excised and weighed. Muscle samples were
immediately frozen in liquid nitrogen and stored at -80°C
until use. RP and SC adipose samples were immediately
processed for adipocyte isolation. All the procedures
were performed according to national guidelines and
under care of the Animal Care and Use Committee at the
University of Navarra.

Adipocyte isolation
RP and SC white fat samples were minced using fine
scissors during 1 minute for RP and 2 minutes for SC
[20]. Grinded tissue was digested at 37°C in KRBA buf-
fer (Krebs-Ringer bicarbonate) containing collagenase
type II (1.25 g/ml), during 30 minutes for RP and 40-60
minutes for SC, the digestion was stopped adding 24 ml
of KRBA buffer. Adipocytes were separated from stro-
mal cells by passing through mesh tissue, and washed
three times at 37°C with 15 ml of KRBA buffer during
5-10 minutes before freezing in liquid nitrogen to keep
them stored al -80°C until use.

Analysis of blood samples
Serum glucose was analyzed using an Autoanalyzer
(COBAS Roche Diagnostic, Basel, Switzerland) by
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enzymatic routine procedures. Serum insulin (Mercodia
A-B, Uppsala, Sweden) and leptin (Rat Leptin ELISA
Kit, Linco Research, St Charles MO, USA) levels were
measured by ELISA. HOMA index (Homeostasis Model
Assessment) was calculated as fasting insulin (μU/ml) ×
fasting glucose (mmol/L)/22.5.

Reverse Transcripcion (RT)-PCR
Total RNA was extracted from frozen skeletal muscle
and RP and SC adipocytes, with Trizol (Invitrogen, Carls-
bad CA, USA). Contaminating genomic DNA was
removed by treatment with DNase (DNA-free™ kit,
Applied Biosystems, Austin TX, USA) and purified total
RNA was used as a template to generate first strand
cDNA synthesis using M-MLV reverse transcriptase
(Invitrogen, Carlsbad CA, USA) and random hexamers
(Applied Biosystems, Austin TX, USA) as primers. Quan-
titative real-time PCR was performed as described by the
provider (Applied Biosystems, Austin TX, USA) using an
ABI-PRISM 7300 HT Sequence Detection System and
Taqman probes for rat Cav-1, Cav-2, Cav-3, GLUT4, IR,
IRS-1 and IRS-2. GAPDH was used as internal control
for RT-PCR efficiency and subsequent normalization.
The results were calculated by the 2-ΔΔCt method [21].

Western Blot Analyses
Skeletal muscle samples were homogenized with HES
lysis buffer containing 20 mM HEPES, 5 mM EDTA, 250
mM sucrose, and 1X protease inhibitor mix (Sigma-
Aldrich, Madrid, Spain) pH 7.5. RP and SC adipocytes
samples were homogenized with the same buffer by pip-
peting. Cell lysates were cleared by centrifugation (12,000
g) at 4°C for 45 minutes and supernatants were stored at
-80°C. Protein content was determined with bincinchoni-
nic Acid Kit (Sigma-Aldrich Madrid, Spain). For skeletal
muscle, 10 to 15 μg, and for adipocytes, 20 to 50 μg pro-
tein were separated by SDS-PAGE gel electrophoresis at
130-150 V for 45 minutes, and electro-transferred to
nitrocellulose membranes (Schleicher & Schuell, Amer-
sham Biosciences, Piscataway NJ, USA) at 300 mA for
one hour. Non-specific binding sites were blocked for 2 h
at room temperature with Tris-base buffer containing
0.1% Tween 20 and 4% non-fat milk except for Cav-2
membranes that were blocked with Tris-base buffer con-
taining only 10% Tween 20. After blocking, membranes
were incubated overnight with specific primary antibo-
dies at suitable dilutions. Secondary HRP-conjugated
antibodies were added for one hour and the signal devel-
oped with the Super Signal West Pico Chemilumines-
cence Substrate (Pierce Biotechnology, Inc., Rockford IL,
USA). Membranes were exposed to Hyperfilm ECL blot-
ting (Amersham Biosciencies, Piscataway NJ, USA).
When necessary, blots were stripped by immersion in
Red-Blot Plus solution 10X (Millipore, Millipore, Billerica

MA, USA) and reprobed with different antibodies, using
the same procedure described above. Protein bands were
quantified by Quantity One data analyzer software 4.6.3
(Bio-Rad, Muenchen, Germany) and normalized to the b-
actin signal as internal control. Cav-1 (1/50,000), Cav-2
(1/20,000) for skeletal muscle and (1/250) for RP and SC
adipocytes, and Cav-3 (1/10,000) antibodies were sup-
plied by Santa Cruz Biotechnology Inc., (Santa Cruz CA,
USA). Insulin receptor IR (1/10,000) and Phosphotyro-
sine (1/10,000) for skeletal muscle and (1/5,000) for RP
and SC adipocytes, antibodies were obtained from Cell
Signalling Technology, (Danvers MA, USA) and b-actin
(1/10,000) antibody was purchased from Sigma-Aldrich
(St. Louis MO, USA). The secondary antibodies were
anti-mouse (1/10,000) from Amersham Biosciences-GE
Healthcare (Piscataway, NJ, USA), anti-rabbit (1/10,000),
from Sigma-Aldrich (St. Louis MO, USA) and anti-goat
(1/10,000), from Santa Cruz Biotechnology Inc. (Santa
Cruz CA, USA).

Inmunoprecipitation
Samples containing 250-500 μg of total protein were
incubated with antibodies against Cav-1 (1/100 v/w),
Cav-2 (1/100 v/w), Cav-3 (1/100 v/w) and IR (1/50 v/w)
overnight at 4°C on a rotating device, followed by addi-
tion of Protein A-G PLUS Agarose (Santa Cruz Biotech-
nology Inc., Santa Cruz CA, USA) for 2 hours in the
same conditions. Immunoprecipitation complexes were
washed three times with 500 μl of HES lysis buffer con-
taining 20 mM HEPES, 5 mM EDTA, 250 mM sucrose
and 1X protease inhibitor (Sigma-Aldrich Madrid,
Spain) pH = 7.5 for skeletal muscle samples, and with
500 μl of lysis buffer (0.25% sodium deoxicholate, 50
mM Tris-HCl pH 7.5, 150 mM NaCl, 1% Triton X-100,
5 mM EDTA, 2 mM NaF, 2 mM sodium ortovanadate,
6 mM octil-glucoxide and 1X protease inhibitor mix
(Sigma-Aldrich, Madrid Spain) for adipocyte samples.
Supernatants were discarded and pellets resuspended in
20 μl Laemmli sample buffer 1X. After 7 min boiling,
samples were centrifuged and analyzed by Western blot-
ting with the corresponding antibodies as described
above. Phosphorylated IR and caveolin bands were nor-
malized with total IR or caveolin as reference.

Data analysis
The results were expressed as the mean ± S.E.M. Data
were compared using Mann-Whitney U test. All ana-
lyses were performed using SPSS version 15.0 for
Windows.

Results
Body, tissue weight and blood determinations
As previously reported using the same dietary model
[17], body and adipose depot weights of the animals fed
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on the HF-diet were significantly higher than those fed
on the control diet. However, no differences were found
between the fasted (F) and non-fasted (NF) groups of
animals (Table 1). Only gastrocnemius muscle weight
decreased by fasting independently of the diet (Table 1),
probably due to glycogen depletion and protein mobili-
zation from muscle tissue [22].
Animals grown on the control diet responded nor-

mally to feeding (NF) and showed increased levels of
glucose, insulin and leptin as a consequence of food
intake (Table 1). On the other hand, animals fed on the
HF-diet were metabolically altered showing insulin resis-
tance, hyperglycemia, hyperinsulinemia and hyperlepti-
nemia. Therefore, the circulating levels of glucose,
insulin and leptin were either not affected (glucose) or
only slightly increased (insulin and leptin) by continuous
feeding (NF) (Table 1). These results suggests a preli-
minary state of insulin resistance in these animals, as
indicated by their significantly higher (p < 0.01) HOMA
index: (C) 2.99 ± 0.68, (HF) 14.07 ± 3.99.

mRNA expression of insulin pathway intermediaries
In skeletal muscle, control-fed animals showed an
increase in IRS-2 expression when not fasted (NF),
which was maintained in HF-fed animals (Figure 1A).
Although not significant, GLUT4 expression was also
higher in NF control animals, but this difference was
lower in HF-fed animals (Figure 1A). GLUT4 mRNA
levels were also higher in adipocytes of NF control ani-
mals, whether they came from the RP or the SC pads,
and this difference was also reduced in HF-fed animals,
specially in SC adipocytes (Figure 1B, C). On the con-
trary, in RP adipocytes, IR and IRS-2 expression were
slightly down-regulated in NF animals independently of
the diet (Figure 1B). In SC adipocytes a similar trend
was observed, but this difference only reached marginal
significance for IR in control-fed animals (Figure 1C).
As expected, muscle IR-phosphorylation was higher in
the control-diet fed NF animals as compared to the

fasted ones. However, this activation decreased in the
NF animals fed the HF diet (Figure 2C).

Caveolin expression and activation in skeletal muscle
Neither expression of Cav-1 and Cav-2 nor phosphory-
lation level of Cav-1 were affected by the feeding status
with either diet (Figure 2). Only Cav-3 expression
seemed to be higher in NF animals, showing increased
mRNA levels in the HF-fed group and higher protein
levels in the control-fed group (Figure 2).

Caveolin expression and activation in adipocytes from
retroperitoneal white adipose tissue
Caveolin expression did not change in NF animals either
at mRNA or protein level (Figure 3A, B). However, sig-
nificant variations in caveolin activation were observed
when their state of phosphorylation was measured. Cav-
1 phosphorylation was reduced in NF animals fed the
control diet but increased in animals fed the HF diet
(Figure 3C). On the other hand, Cav-2 showed enhanced
phosphorylation in NF animals independently of the diet
(Figure 3C).

Caveolin expression and activation in adipocytes from
subcutaneous white adipose tissue
In contrast to adipocytes from the RP pad, some
changes were observed in caveolin expression in SC adi-
pocytes. Thus, NF animals fed the HF diet showed
decreased levels of Cav-1 mRNA and of Cav-2 protein.
A reduction of Cav-1 protein and Cav-2 mRNA levels
were also observed in the same groups of animals, but
did not reached statistical significance (Figure 4A, B).
Interestingly, Cav-2 phosphorylation was increased in
NF animals independently of the diet (Figure 4C), fol-
lowing the same pattern as observed in RP adipocytes.
On the other hand, Cav-1, whose phosphorylation
increased only in NF control-fed animals (Figure 4C),
seemed to follow the opposite pattern to that observed
in RP adipocytes.

Table 1 Body and tissue weights and metabolic determinations in the four experimental groups

C HF

F NF F NF

Body Weight (g) 424 ± 7 431 ± 23 508 ± 33# 538 ± 18 t

Skeletal Muscle (g) 2.01 ± 0.33 2.51 ± 0.06* 1.93 ± 0.04 2.64 ± 0.10*

Retroperitoneal fat (g) 7.99 ± 1.30 9.90 ± 1.70 20.49 ± 2.75# 17.64 ± 2.57 t

Subcutaneous fat (g) 8.15 ± 1.54 10.99 ± 2.12 17.41 ± 2.31# 20.68 ± 6.06

Glucose (mg/dL) 104.45 ± 4.33 124 ± 6.22* 125.02 ± 5.97 t 123.3 ± 3.47

Insulin (ng/mL) 0.45 ± 0.09 2.05 ± 0.14* 1.80 ± 0.47# 2.50 ± 0.47 T

Leptin (ng/mL) 3.53 ± 0.84 18.94 ± 4.06* 17.87 ± 3.54# 20.93 ± 5.78

C: control diet fed animals. HF: high-fat diet fed animals. F: Fasted animals. NF: Non fasted animals. Data are given as means ± SEM. Groups were compared
using the Mann-Whitney U test: (F vs NF), T < 0.10; *p < 0.05; (C-F vs HF-F and C-NF vs HF-NF), t < 0.10, # p < 0.05.
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Discussion
In agreement with previous studies [17,18], the current
results indicate that the animals fed on a high-fat cafe-
teria diet for an extended period of time, besides becom-
ing overweight, show hyperleptinemia, hyperglycemia,
hyperinsulinemia and develop insulin resistance. This
outcome is an indication of an altered metabolic state
related to obesity development. These determinations are
usually made in animals fasted overnight before being
sacrificed (F), so that the differences in food intake
between them during the previous hours will not influ-
ence the levels found. In the present study, a group of
animals had free access to food until the moment of

sacrifice and therefore were not fasted overnight (NF).
These NF animals, fed a control-diet, showed the
expected higher glucose and insulin levels as a conse-
quence of food intake, which constitutes the normal
metabolic response. These animals also showed increased
leptin levels, explained as a satiety signal [23] (Table 1).
On the other hand, the NF animals that were fed the

HF-diet experienced the mentioned insulin resistant
metabolic state, which is characterized by higher levels
of glucose, insulin and leptin. In this case, the continu-
ous food availability produced smaller, although still
apparent, increases in insulin and leptin levels, but no
changes in circulating glucose (Table 1).

Figure 1 mRNA levels of IR, IRS-1, IRS-2 and GLUT4. C: control diet fed animals. HF: high-fat diet fed animals. F: Fasted animals. NF: Non
fasted animals. (A) Skeletal muscle (SM). (B) Retroperitoneal adipocytes (RP). (C) Subcutaneous adipocytes (SC). Data are means ± SEM of the
ratio between each gene and GAPDH expression and are referred to gene expression in control-diet fed, fasted group (C-F = 100). Groups (F vs
NF) were compared using the Mann-Whitney U test: T < 0.10; *p < 0.05.
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Figure 2 Caveolin expression and caveolin and insulin receptor (IR) phosphorylation in skeletal muscle. C: control diet fed animals. HF:
high-fat diet fed animals. F: Fasted animals. NF: Non fasted animals. (A) mRNA levels. Data are means ± SEM of the ratio between each gene
and GAPDH expression and are referred to gene expression in control-diet fed, fasted group (C-F = 100). (B) Protein levels. Data are means ±
SEM of the ratio between each caveolin and actin and are referred to expression in control-diet fed, fasted group (C-F = 100). (C)
Phosphorylation levels. Data are means ± SEM of the ratio between each phosphoprotein and total caveolin or IR and are referred to
phosphorylation level in control-diet fed, fasted group (C-F = 100). Groups (F vs NF) were compared using the Mann-Whitney U test: T < 0.10; *p
< 0.05.
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Effect of non fasting in skeletal muscle
In normal conditions, skeletal muscle is responsible for
80% of blood glucose clearance, whereas after several
hours of fasting the brain becomes the main destination
for circulating glucose [24]. NF control-diet fed animals
had high serum glucose levels and an active insulin sig-
nalling machinery that promotes glucose entrance in
muscle cells. In fact, in these animals increased IR-phos-
phorylation and IRS-2 expression were found (Figures 1A

and 2C). GLUT4 expression was also slightly higher,
although the difference did not reach statistical signifi-
cance (Figure 1). Although IRS-1 in muscle and adipose
cells is known as the main IR substrate that mediates glu-
cose uptake through PKB/Akt activation and GLUT4
translocation to plasma membrane [25], in liver, it has
been described that IRS-1 and IRS-2 may complement
each other in insulin signalling [26]. Therefore, the
observed increase in IRS-2 expression (Figure 1) could

Figure 3 Caveolin expression and phosphorylation in
retroperitoneal adipocytes. C: control diet fed animals. HF: high-
fat diet fed animals. F: Fasted animals. NF: Non fasted animals. (A)
mRNA levels. Data are means ± SEM of the ratio between each
gene and GAPDH expression and are referred to gene expression in
control-diet fed, fasted group (C-F = 100). (B) Protein levels. Data are
means ± SEM of the ratio between each caveolin and actin and are
referred to expression in control-diet fed, fasted group (C-F = 100).
(C) Phosphorylation levels. Data are means ± SEM of the ratio
between each phosphoprotein and total caveolin and are referred
to phosphorylation level in control-diet fed, fasted group (C-F =
100). Groups (F vs NF) were compared using the Mann-Whitney U
test: *p < 0.05.

Figure 4 Caveolin expression and phosphorylation in
subcutaneous adipocytes. C: control diet fed animals. HF: high-fat
diet fed animals. F: Fasted animals. NF: Non fasted animals. (A)
mRNA levels. Data are means ± SEM of the ratio between each
gene and GAPDH expression and are referred to gene expression in
control-diet fed, fasted group (C-F = 100). (B) Protein levels. Data are
means ± SEM of the ratio between each caveolin and actin and are
referred to expression in control-diet fed, fasted group (C-F = 100).
(C) Phosphorylation levels. Data are means ± SEM of the ratio
between each phosphoprotein and total caveolin and are referred
to phosphorylation level in control-diet fed, fasted group (C-F =
100). Groups (F vs NF) were compared using the Mann-Whitney U
test: *p < 0.05.
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reflect an attempt to improve insulin signalling in muscle
cells. This response could be stressed in HF-diet fed ani-
mals under altered metabolic conditions, as suggested by
the increased IR expression in NF individuals. Neverthe-
less in these animals this regulatory mechanism seems to
be ineffective, since GLUT4 expression was not modified
(Figure 1A) and blood glucose remained high (Table 1).
As a matter of fact IR phosphorylation was diminished in
NF HF-diet fed animals (Figure 2C).
Since Cav-3 is the main isoform expressed in muscle

tissue, being functionally equivalent to Cav-1, it is not
surprising that only Cav-3 expression seems to be
affected in NF animals. Increased Cav-3 expression in
normal conditions, as observed in NF control-diet fed
animals, may be related to improved insulin signalling
[17], although Cav-3 phosphorylation does not change
(Figure 2C). In NF HF-diet fed animals Cav-3 mRNA
level was higher, but this increase in expression would
also be ineffective in glucose metabolism as explained
before. Therefore, in agreement with previous results
[17], it seems that in HF-diet fed animals, regulation of
Cav-3 expression is not related to an impaired insulin
signalling cascade. In regard to this, it has been reported
that Cav-3 expression may be induced by oxidative
stress through p38MAPK [27]. Indeed, previous studies
have reported that animals fed on a high fat diet show
increased oxidative stress in muscle tissue [28].

Effect of non fasting in adipocytes of white adipose
tissue
Adipose tissue is considered a multifunctional organ
having a critical role in metabolism and energy balance
regulation, and enlargement of adipose tissue depots is
the most characteristic feature of obesity [29]. However,
the distribution of body fat appears to be even more
important than the total amount of fat. In this way,
abdominal adiposity is much more closely associated
with insulin resistance, type 2 diabetes, hypertension,
and dyslipidemia than subcutaneous fat mass [30]. Visc-
eral adipose tissue is also thought to be not only meta-
bolically more active than subcutaneous, showing higher
insulin-stimulated glucose uptake [31], but also more
intensely affected by obesity-related inflammation and
oxidative stress [32].
In the current work, we have studied caveolin expres-

sion in relation to insulin signalling in adipocytes iso-
lated from the visceral (RP) and SC adipose depots in
animals fed a HF-diet that were fasted (F) or not fasted
(NF) before sacrifice.
In RP adipocytes it was observed that IR and IRS-2

expression were downregulated in NF control-diet fed
animals whereas GLUT4 was upregulated. Analogous
results were obtained in SC adipocytes, although in
this case IRS-2 expression was not affected (Figure 1B,

C), and a similar observation was made in brown adi-
pose tissue [33]. Control-diet fed animals have func-
tional insulin signalling transmission and the GLUT4
increase may be related to insulin stimulation after
feeding. In addition, Desbuqois et al. [34] reported that
hyperinsulinemia can stimulate IR degradation and a
decrease in IR mRNA level, and the NF control-diet
fed animals, as expected, do actually exhibit higher
insulin level (Table 1).
Non-fasted animals fed the HF-diet showed very simi-

lar results in RP adipocytes, but the increase in GLUT4
expression was notably less marked (Figure 1B). Since
these animals have become hyperinsulinemic, blood
insulin increment caused by food intake did not sub-
stantially modify the situation (Table 1), and the drop in
IR or IRS-2 expression was also less pronounced (Figure
1). These animals have an altered insulin response that
would diminish glucose uptake despite a GLUT4 expres-
sion increase. Therefore, GLUT4 expression seems to be
regulated independently of the insulin signalling cascade
intermediaries. In relation to this, chronic local inflam-
mation, cell hypoxia, and the associated production of
ROS and oxidative stress described in adipose tissue of
obese subject [9], have been described as factors that
can upregulate GLUT4 in adipocytes [35]. On the other
hand, in SC adipocytes, a lack of effect was observed on
the insulin intermediaries gene expression in the NF
animals fed on the HF-diet (Figure 1C). This outcome is
probably due to the fact that SC fat is metabolically less
active, and therefore less sensitive to nutritional varia-
tions, than RP fat [36-38].
In RP adipocytes expression of neither of the caveolins

seemed to be influenced by food intake (NF) indepen-
dently of the diet (Figure 3). However, in SC adipocytes
a decrease of Cav-1 mRNA and of Cav-2 protein was
observed in NF HF-diet fed animals (Figure 4). In regard
to this, differences in caveolin regulation have been
observed between visceral and SC adipocytes from obese
humans [39].
In contrast with muscle, food intake (NF) provoked

changes in the phosphorylation state of caveolins in adi-
pose tissue. Cav-1 is the isoform more directly impli-
cated in insulin signalling in adipose tissue, therefore,
under normal conditions (control-diet), increased activa-
tion of Cav-1 when glucose level rises by nutrient intake
(NF), would improve insulin signal. We have observed
this behaviour in the less insulin sensitive SC adipocytes
(Figure 4C). However, in RP adipocytes this response
might not be necessary, and indeed Cav-1 became less
phosphorylated by nutrient intake (Figure 3C). This
effect could be related to the reduction in IR and IRS-2
expression associated to glucose level elevation pro-
duced by food intake as mentioned before. In fact, high
glucose serum levels have been shown to downregulate

Gómez-Ruiz et al. Lipids in Health and Disease 2011, 10:55
http://www.lipidworld.com/content/10/1/55

Page 8 of 10



Cav-1 expression in Schwann cells [40]. Cav-2 does not
seem to be directly involved in insulin signalling and is
considered a structural aid for functional caveolae for-
mation. In this sense, increased Cav-2 phosphorylation
by food intake in normal conditions, as observed in
both RP and SC adipocytes (Figures 3C and 4C), could
be considered a mechanism to improve insulin
signalling.
In the altered metabolic conditions of HF-diet fed

animals, caveolin phosphorylation would not be regu-
lated in coordination with the impaired insulin signal-
ling cascade, but it could conceivably be more related
to the increased inflammation and oxidative stress con-
ditions associated with obesity in adipose tissue. As a
matter of fact, it has been described that Cav-1 phos-
phorylation can be mediated by p38MAPK and Scr
through a pathway induced in response to oxidative
stress [41]. In regard to this, oxidative stress response
elements have been described in the promoter of
caveolin-1 [42], which indeed responds to oxidative
stress with an increase in its expression [43]. With
respect to inflammation, LPS and different proinflama-
tory cytokines such as TNF-alpha and IL-1 have been
shown to induce the upregulation of Cav-1 through
the NF-Kappa B pathway [44]. The link between Cav-1
and these phenomena is confirmed by the observation
that, the loss of Cav-1 in bone marrow-derived stromal
cells from Cav-1 deficient mice, induces oxidative
stress and mimics a pseudo-hypoxic state that leads to
inflammation in the tumor stromal microenvironment
[45]. In relation to our results it has been shown that
transient hyperglycemia (i. e. nutrient intake) induces
an increase in plasma IL-6, TNF-alpha, and IL-18
mediated by oxidative stress [46]. In the current work,
we report that nutrient intake (NF), in a comparable
situation, provokes increased phosphorylation of both
caveolins in RP adipocytes and only of Cav-2 in SC
cells (Figures 3C and 4C).
These differences also strengthen the idea that both

types of adipose tissue are not metabolically equivalent
and have different responses in accordance with their
physiological role [47].

Conclusions
Animals fed the control-diet show a normal metabolism,
and food intake (NF) provokes elevation of serum glu-
cose, insulin and leptin levels. This in turn would cause
the activation of the insulin signalling pathway in mus-
cle and adipose tissue, which will result in increased glu-
cose uptake through the stimulation of GLUT4 activity
in the cell membrane. Caveolin expression does not
seem to be critically affected except in muscle, where a
slight increase in Cav-3, the main isoform in this tissue,
is observed.

On the other hand, animals fed the HF-diet develop a
prediabetic altered metabolism in which insulin signal-
ling is impaired. In this condition, caveolin expression
in muscle and adipose tissue in response to food intake
(NF) seems to be regulated independently of insulin sig-
nalling, as we have reported previously in fasted animals
[18]. In summary our data clearly show that caveolins
respond to nutritional changes and strengthen the role
of these proteins in the regulation of energy metabolism.
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