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Abstract 

The huge health burden accompanying obesity is not only attributable to inadequate dietary and 

sedentary lifestyle habits, since a predisposed genetic make-up and other putative determinants 

concerning easier weight gain and fat deposition have been reported. Thus, several investigations 

aiming to understand energy metabolism and body composition maintenance have been performed 

considering the participation of perinatal nutritional programming and epigenetic processes as well 

as inflammation phenomena. The Developmental Origins of Health and Disease (DOHaD) 

hypothesis and inheritance-oriented investigations concerning gene-nutrient interactions on energy 

homeostasis and metabolic cell functions have suggested that inflammation could be not only a co-

morbidity of obesity, but also an etiological agent. There are several examples about the role of 

nutritional interventions in pregnancy and lactation, such as caloric deprivation, protein restriction 

and excess fat feeding, which determine a cluster of disorders affecting energy efficiency in the 

offspring as well as different metabolic pathways, which are mediated by epigenetics encompassing 

the chromatin information mainly encrypted by DNA methylation patterns, histone covalent 

modifications and ncRNA or miRNA. Indeed, epigenetic mechanisms may be boosted or impaired 

by dietary and environmental factors in the mother, intergenerationally or transiently transmitted, 

and could be involved in the obesity and inflammation susceptibility in the offspring. The aims 

currently pursued are the early identification of epigenetic biomarkers concerned in individual’s 

disease susceptibility and the description of protocols for tailored dietary treatments/advises to 

counterbalance adverse epigenomic events. These approaches will allow diagnosis and prognosis 

implementation and will facilitate therapeutic strategies in a personalized “epigenomically-

modeled” manner to combat obesity and inflammation. 

 



Introduction 

 The vast health problems associated with fat deposition resulting in obesity is not only a laziness or 

gluttony trouble associated to inadequate sedentary lifestyles and unbalanced dietary habits, since in 

addition to a more susceptible genetic make-up to easier gain weight and fat deposition a number of 

recognized scientific evidences have theorized about the roles of other putative determinants(1). 

Thus, there are proofs that some other possible contributing factors to the obesity epidemic are 

microorganisms (infectobesity/microbioma), increased maternal age in human mothers, assortative 

mating plus a greater reproductive rates among couples with higher adiposity, sleep debits, 

hormonal and neurological disorders, undue weight gain associated to undesirable pharmacological 

side-effects, lesser variability of external weather conditions and  different intergenerational or 

intrauterine/epigenetic mediated effects(2). 

In this context, it has been claimed that parental nutrition previous to conception, maternal 

perinatal feeding and early postnatal dietary intake are involved in the onset of some chronic 

conditions accompanied by inflammatory manifestations such as obesity, diabetes, hypertension, 

dyslipaemia, etc at the life cycle, which has laid down the foundations of the offspring metabolic 

encoding(3). In addition to perinatal programming studies, several investigations aiming to 

understand energy metabolism and fuel utilization have been performed considering the interactions 

between genetics, inflammation phenomena and immunologically-related mediators(4). 

The term epigenetics was coined as a conceptual assumption for disentangling hither to 

undiscovered relationships between environmental settings and the genetic background to produce a 

given phenotypical outcome(5). Thus, an early definition for epigenetics involved "the study of the 

mechanisms of temporal and spatial control of gene activity describing pathways different from 

those directly attributable to the underlying DNA sequence and with an influence on the adaptive 

reaction of an organism” overcoming the usual legacy assigned to DNA(6). The "epigenetic code” 

encompass the chromatin information mainly encrypted by DNA involving methylation patterns in 

the nucleotide sequence, histone covalent modifications, miRNAs profiles and polycombs, which 

constitutes “the sum of the alterations to the chromatin template that collectively establish, 

modulate and propagate different patterns of gene expression and/or silencing from the same 

genome”(7). Therefore, epigenetics can provide some creative insights to understand genetic foetal 

programming, monozygotic twin differences, transgenerational outcomes and the onset of chronic 

diseases with associated inflammatory features such as obesity in the adult, which is requiring 

newer and elegant experimental models with a focus on phenomena affecting gene expression but 

not linked to the nucleotide sequence(8). 

http://en.wikipedia.org/wiki/Phenotype


The Developmental Origins of Health and Disease (DOHaD) hypothesis and nutritional 

programming. 

 The Developmental Origins of Health and Disease (DOHaD) hypothesis, which was initially based 

on epidemiological  approaches, is now receiving steady back-up and boosted support through 

intensive genetically-founded experimental research in both cell or animal models and through 

human genome-related findings(9). 

The pioneer finding that an association between poor foetal and infant growth with a higher risk 

of suffering metabolic syndrome features in adulthood has allowed to sustain the thrifty phenotype 

hypothesis, which points out that early inadequate nutrition induces insulin resistance(10). Additional 

studies conducted in other British Cohort(11), in Danish subjects born between 1936 and 1983(12), 

Dutch famine or Leningrad siege affected children(13) have been consistent with the possibility of  

developmentally-mediated origin of obesity(14). 

Furthermore, the National Children Study (NCS), the Southampton’s women survey (SWS), the 

Viva project and the Behavioural Perinatology Research Program  together with  other more 

recently launched investigations such as the Avon Longitudinal Study of Parents and Children 

(ALSPAC) are contributing to identify critical processes underlying the interactions between 

retarded foetal growth and development with adiposity related  outcomes and obesity features(15).  

Indeed, nutritional programming may explain the predisposition of some individuals to suffer 

non-communicable diseases in the adulthood linked to deprived in utero or infant development(16). 

Inheritance-oriented investigations concerning gene-nutrient interactions on energy homeostasis 

processes and metabolic cell functions is extending to all clinically chronic relevant diseases such as 

diabetes and cardiovascular events as well as to obesity and associated inflammatory features(17, 18). 

Also, some studies have identified that inflammation and transient infections could be not only a co-

morbidity of obesity and diabetes(19); but also an etiological agent(20, 21). 

The foetal or developmentally programmed genesis of adult sickness hypothesis settled that 

environmental factors and maternal lifestyles, particularly adverse nutritional disturbances, proceed 

in early life to drive the risks for the onset of metabolic diseases and excessive weight gain in later 

life stages(22). Indeed, maternal nutrition can program gene expression patterns to the embryo that 

persist into adulthood and may contribute to the appearance of typical metabolic syndrome features 

such as hypertension, insulin resistance, hyperlipemia and abdominal obesity(23). The parental 

conditions and lifestyles, which may involve maternal size/obesity, famine at perinatal periods, the 

use of nutritional supplements, alcohol or drug abuse as well the administration of therapeutical 

agents in this critical period may alter specific processes with an impact on embryonic, placental 

and foetal growth, organogenesis or regulatory set points for system functions affecting adiposity, 



where inflammatory and immunologically mediated processes may be involved(24). Interestingly, 

some of these epigenetically mediated signals may be not permanent but transient, which is of 

interest not only for prevention, but also as a target for developing future therapeutic focus(25).  

Unfavourable environmental cues coming from the mother such as psychological stress, 

infection, over-or undernutrition, smoking, neuroendocrine disruptors, trauma or diseases are 

signalled inputs negatively affecting the embryo, foetus or neonate(26). The adaptive responses may 

involve growth stunting or tissue remodelling with an impact on physiological functions and 

metabolism being the trade off and increased risk in later life(3). The characteristics of the 

programmed outcomes depend upon the insult or stimuli as well as on the timing of the exposure(27).  

Understanding the maternal regulation of foetal development and programming involves a 

knowledge about the genome, baseline maternal body composition, dietary and metabolic status, 

utero-placental blood flow and substrate transfer that may condition the nutrient balance and foetal 

malnutrition by inducing hypoxemia or metabolic changes (cortisol, insulin, nutrient oxidation) and 

altering body composition in the newborns(28). In this context; the term developmental plasticity has 

been used to define the aptitude of a unique genotype to produce a variable phenotype in response 

to changing environmental circumstances, even though may be neither adaptive nor prognostic as 

stated by the developmental programming theory(29), but struggling for resources which may 

envisage or forecast future metabolic scenarios in an effort to tune gene expression to generate a 

phenotype best adapted to the predictable afterwards environment(30). 

A number of mammal’s models have been developed to examine the potential processes and 

mechanisms involved in perinatal programming that depends on nutrition(31). The phenomena and 

manifestations ascribed to early nutritional programming have been explained through different 

mechanisms such as the involvement of the adipose tissue, the participation of different hormones 

and endocrine systems, enzymes, transcription factors and signalling mediators (glucocorticoids, 

insulin, PPAR family, adipokines,..), the regulation of specific nutrient related metabolic pathways 

(lipogenesis, glyconeogenesis,…), the control of neural networks affecting the appetite system 

(specific orexigenic/anorexigenic neuropeptides and the HPA axis) and the up/down feedback 

concerning the gene expression machinery and epigenetic marks(32, 33). 

The question if later obesity is in utero or early induced after birth has been repeatedly addressed 

and researched(34, 35). Thus, it seems that glucose, insulin and leptin coming from the mother’s blood 

or taken from the breast milk is of relevance for the persistent programming of food intake control 

at least in the rodent(36) as well as on obesity related peptides and hormones such as insulin(37). 

Furthermore, hormonal and metabolic signals acting during the perinatal period could alter the 

structure and functions concerning the fat-brain axis or adipogenic genes in the adipose tissue, that 



regulates the energy balance during later life(38). Alternatively, adverse intrauterine exposures may 

produce long-term changes in mRNA levels leading to a thrifty phenotype with changes affecting 

liver, muscle and renal anatomy and physiology(14) as well as longlasting changes in mitochondria 

that can be associated to obesity and insulin resistance in later life(39). Other mechanism that have 

been investigated in different animal models in order to clarify the role of the perinatal feeding on 

tissue structure have revealed an important impact of the maternal diet on proliferation and 

differentiation processes in the pancreas and in the brain involving an overexposure to 

glucocorticoids mediated by a reduced activity of the placental 11-beta hydrosteroid 

dehydrogenase(33). Also, a maternal obese condition influences foetal growth and body composition 

with implications in the future offspring health depending on the genetic background, the 

intrauterine metabolic environment and the generated maternal metabolites(22). Thus, a mild 

maternal overnutrition led to increased adiposity, glucose intolerance and altered brain appetite 

regulators in offspring(40), while food-deprived dams may transfer to the offspring patterns of 

increased hepatic gluconeogenesis, enhanced release and impaired oxidation of fatty acids from 

adipocytes, resistance to ketosis and changes in glucose uptake mediated for an increased insulin 

receptor expression(10). On the other hand, intrauterine growth restriction due to an induced 

perinatal impaired uteroplacental function or nutrient deficiency have been linked to lower leptin, 

normal or lower adiponeptin and higher ghrelin as well as visfatin levels, while contradictory results 

have been reported concerning apelin/resistin and other pro-inflammatory markers such as TNF-alfa 

and Il-6(41). Interestingly, maternal perinatal undernutrition attenuates T-Cell function in adult male 

rat offspring(42). 

Finally epigenetic marks affecting a number of  genes regulating energy metabolism, 

adipogenesis or inflammatory processes are providing new clues to understand the relationships 

between  nutritional programming and obesity in the adulthood(24, 43). 

Despite the general acceptance of the DOHaD hypothesis, the terms of such proposal  has not 

been always demonstrated in epidemiological surveys, while that some inconsistent results have 

been reported in animal models(26), a systematic error in interpreting experimental data and a 

publication bias due to missing information is not rule out. 

 

Animal models and epigenetic regulation   

 There is a number of experimental interventions in animals about the role of nutrition in pregnancy 

and lactation such as caloric deprivation, protein restriction and excess fat feeding(33). Such 

investigations have proven a cluster of disorders affecting energy efficiency as well as the 

impairment of  different metabolic pathways and adverse predisposition for suffering cardiovascular 



diseases, glucose intolerance and obesity on the offspring(8); and unfavoutable inflammatory 

interactions(44). 

A loss of diurnal variation in heart rate and blood pressure in adulthood has resulted from 

maternal undernutrition followed by postnatal overnutrition in rodents, while hyperphagia resulting 

from perturbed development of the hypothalamic circuitry devoted to food intake control may 

contribute to overweight and developmental changes in fat cell precursors(45). On the other hand, 

maternal obesity has an effect on pancreatic beta cells inducing a higher risk of diabetes(46). The 

mitochondrial DNA content of the liver and skeletal muscle were reduced in fetal and early 

postnatal undernourished animals even when balanced nutrition was provided after weaning, which 

were accompanied by a decrease in mitochondrial DNA-encoded gene expression indicating that 

poor nutrition in early life causes long-lasting changes in mitochondria that may contribute to the 

development of insulin resistance in later life(39). The adverse effects of a in utero low protein 

dietary intake have been associated with diabetes(47), increased systolic blood pressure(48), altered 

glucose tolerance(48), hyperisulemia and reduced insulin signalling protein expression(49). Also, a 

reduced maternal protein consumption during pregnancy and lactation has window of exposure and 

sex-specific effects on offspring growth, adiposity, appetite, glucose utilization and circulating 

leptin(50). A programming of hepatic insulin-sensitive enzymes in the offspring of rat dams fed a 

protein-restricted diet was found, where glucokinase activity decreased (approximately 50%), 

whereas phosphoenolpyruvate carboxykinase (PEPCK) activity increased (approximately 100%) 

with parallel changes in gene expression in both enzymes(51). Indeed, the understanding of genetic 

and epigenetic contributions to human nutrition and health is contributing to translate basic biology 

into clinical applications(1, 52) concerning perinatal nutrition and disease in the adulthood. 

Three genomic targets have been involved in the modulation of the gene expression changes: 

epigenetic marks at the promoter regions of some epiobesigenes , transposable elements that lie 

adjacent to genes with metastable epialleles and the regulation of imprinted genes(53). In this 

context, epigenetic studies are contributing to unravel some putatively hidden phenomena that are 

not being explained by the accomplishment of the Human Genome Project in relation to obesity(54). 

In the last years, different examples of dynamical changes in DNA methylation patterns, histone 

covalent modifications and the involvement of non coding RNAs due to the restriction or 

supplementation with different nutrients have been reported(4, 24) as well as related to obesity(55), 

Thus, the methylation pattern of the leptin promoter in adipocytes is affected by a high fat intake in 

rats following an inverse trend to  body weight changes(56), while weight gain induced by an 

isocaloric pair-fed high fat diet produced a nutriepigenetic outcome on FASN and NDUFB6 gene 

promoters(57). 



Interestingly, maternal supraphysiological methyl group (folate, cobalamine, choline and 

betaine) or genistein  supply throughout pregnancy modified DNA methylation of some key 

metabolic genes, with implications in adiposity(58, 59), while protein restriction of pregnant rats 

induced DNA hypomethylation in the glucocorticoid receptor and peroxisomal proliferator-

activated receptor-α genes in the liver of the newborns, which was prevented by folic acid 

supplementation(60). Also, it has been found that a chronic high-fat diet in fathers epigenetically 

programs β-cell dysfunction in female rat offspring(61). These findings are  in agreement with 

previous observations suggesting that transgenerational epigenetic inheritance may be sex 

dependent for specific traits(62, 63).  

In addition to changes in methylation patterns, epigenetic transfer may involve histone 

modifications and microRNA mediated mechanisms(64). Thus, an energy-dense maternal diet 

driving to obesity epigenetically impairs fetal chromatin structure in primates via covalent 

modifications on histones(65), while a role for microRNA in the alternative expression of IGF-2 in 

fetal livers from high-fat fed dams has been reported(66, 67). 

All these data and experiments strongly suggest that epigenetic mechanisms may be boosted or 

impaired by dietary and environmental factors in the gestating mother and could be involved in 

obesity susceptibility in the offspring(9, 35). 

 

Obesity, inflammation and epigenetics 

 Inflammation is a protective complex biological response mounted by tissues to combat injurious 

stimuli in order to maintain cell homeostasis(68),  which include host defence, tissue remodelling and 

metabolic changes and involve multiple mechanisms such as the contribution of  immune cells 

(recruitment and activation of leukocytes, granulocytes, monocytes, B- T lymphocytes and dendritic 

cells), the involvement of different mediators (interleukins, TNF-alfa, leptin, adipokynes….) or the 

regulation of signalling pathways (insulin, glucose, lipids…) and eventually the epigenetic 

regulation of the expression of some related genes(4, 69). Indeed, many important risk factors for 

obesity (overnutrition, low dietary fibre intake, sedentary lifestyles, sleep debts, neuroendocrine  

status or genetic make-up) have been found to be implicated in local or low-grade systemic 

inflammation(19). Thus, an excessive adiposity  has been seen either as a cause or as a consequence 

of chronic inflammatory disorders and epimutations(20, 23). Interestingly, inflammatory signaling as 

mediator of epigenetic modulation in tissue-specific chronic inflammation has been identified(70). 

One of the challenges for investigators researching in the epigenomics field is identifying and 

characterizing the epigenetic marks and those stimuli modulating the expression of some specific 

genes (epiobesogenes) in pathways involving obesity/body weight homeostasis and energy balance 



processes such as adipogenesis, inflammation, appetite, insulin signalling, thermogenesis or 

macronutrient turnover(24). Indeed, a bioinformatics analysis of promoter regions for the search of 

epigenetic biomarkers of obesity, have identified affected methylation patterns on several obesity-

related genes such as FGF2, PTEN, CDKN1A and ESR1, implicated in adipogenesis,  

SOCS1/SOCS3, in inflammation, and COX7A1 LPL, CAV1 and IGFBP3, in intermediate 

metabolism and insulin signalling(71). The characterization of those individuals that at an early age 

could present changes in the methylation profiles of specific genes could help to predict their 

susceptibility to later develop obesity, which may allow to prevent and follow-up its progress, as 

well as to research and develop newer therapeutic approaches. Thus, from approximately 760 

human genes under putative epigenetic regulation (http://www.ncbi.nlm.nih.gov/sites/entrez), 

about 20% of them, defined as epiobesigenic genes, could be associated to obesity(72). The 

knowledge of the modification of their methylation patterns due to different dietary factors, age, 

inflammation or some of the physiological aspects surrounding overweightness, could be crucial to 

investigate the role of these mechanisms in the prevention, onset and therapy of obesity as well the 

reversibility/stability of the epigenetic code and the involvement of specific enzymes (methylases, 

acetylases…) is of interest(54).  

Signal-specific inflammatory mechanisms epigenetically-mediated may operate through 

transcription factors (NFkB family), kinases (IKK-related kinases, MSK, PKA, PI3k, AKT…), the 

endoplasmic reticulum (calcium), biochemical activation of DNA methyltransferases (DMT, 

DNMT) and histone-modifier enzymes ( HDAC/HAT, HMT, SIRT...), changes in cellular pools of 

acetylCoA, NAD or methyl donors, which are sensible to oxidative stress, hyper- or hypoglycemia, 

fatty acids load, and be activated or inhibited by overnutrition(67, 73). Furthermore, in addition  to 

epigenetic processes involving methylation marks, histone modifications, also noncoding RNAs are 

susceptible to dynamic inflammatory control(4). 

The concept of epigenetic regulation is gradually being recognized as an important factor in 

inflammatory related events such as obesity, diabetes and cardiovascular diseases(74). Gene 

silencing in severe systemic inflammation have been associated to the reprogramming of acute pro-

inflammatory genes, the intervention of the NFkB and compartmentalization of the epigenetic 

process(75). In this context, the impact of inflammation on global  DNA methylation has been 

demonstrated in chronic kidney disease, while an epigenetic regulation of high-glucose induced 

proinflammatory cytokine production in monocytes have been described for the polyphenol 

curcumin involving NFkB(76). On the other hand, histone deacetylase inhibitors (HDACi) are 

emerging as possible epigenetic modulators of gene expression controlling the inflammatory 

response in some circumstances(77). Also, an increased expression of DNA methyltransferase3a in 



obese adipose tissue has been reported(78), while the methylation of polycomb target genes may be 

mediated by inflammation(79). Furthermore, redox modulation of chromatin remodeling may have 

an effect on hystone acetylation/deacetylation modulating the expression of pro-.inflammatory 

genes(80). Finally, enhanced levels of micro RNA125b are associated to increased to specific 

inflammatory gene expression on db/db mice(81). A relevant locus-specific DNA methylation 

affecting inflammatory processes have been reported for at least the following genes: leptin (LEP), 

superoxide dismutase (SOD), glucorticoid receptor (GR), peroxisome proliferator-activated receptor 

(PPAR), tumor necrosis factor-alfa (TNF-a), endothelial and inducible nitric oxide synthase 

(eNOS/iNOS) and hypoxia-inducible factor (HIF), whose epigenetic machinery understanding will 

contribute to the inflammation management and associated disorders such as obesity(4). 

Obesity-associated adipose tissue enlargement is often associated to an elevated secretion of 

proinflammatory adipokines such as leptin and cytokines such as TNF-alpha, whose epigenetic 

regulation has emerged as a potentially important gene expression determinant(82). Thus, at baseline, 

obese women with better response to an energy restricted dietary intervention  designed to induce 

weight loss showed lower promoter methylation levels of leptin and TNF-alpha than the non-

responder group, which  suggest that leptin and TNF-alpha methylation levels could be used as 

epigenetic biomarkers concerning the response to a low-calorie diet. Indeed, the methylation profile 

could help to predict the susceptibility to weight loss as well as some comorbidities such as 

hypertension or type 2 diabetes(83, 84). Additional investigations concerning the interactions between 

obesity and inflammation under a epigenetic perspective have allowed to identify different CpG 

sites from WT1 and ATP10A genes, which were significantly modified as a result of an 

hypocaloric-diet-induced weight loss in humans by altering  DNA methylation status of  these 

specific genes indirectly related with inflammatory processes, suggesting that  baseline DNA 

methylation patterns may be used as a prognostic epigenetic markers that could help to predict 

weight loss(85). 

Summing up, there is growing evidence suggesting that interindividual differences in obesity 

susceptibility depend not only in the DNA sequence (genetics) but also on epigenetic factors 

affecting gene expression such as DNA methylation, covalent histone modifications, chromatin 

folding and the regulatory actions of miRNAs and polycombs complexes, in which inflammatory 

phenomena may be involved. Thus, epigenetics is providing novel insights on cellular identity, stem 

cell flexibility, tissue regeneration, tumorigenesis, and aging and to understand monozygotic twin 

differences and interestingly the onset of chronic diseases in the adult such as obesity. The 

following aims are presently pursued in the ground of obesity and epigenomics: the early 

identification of epigenetic biomarkers concerned in individual’s disease susceptibility and the 



description of weight lowering protocols for tailored dietary treatments/advises to avoid/neutralize 

likely adverse epigenomic events. Other questions that remain to be answered are to understand the 

regulation of epigenomic fenomena, the period(s) for intervention, the key nutritional factors and 

doses, which will allow diagnosis and prognosis implementation and will facilitate 

Preventive/curative strategies in a personalized “epigenomically” based manner to combat obesity. 
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