5,236 research outputs found

    3x3 Multibeam Network for a Triangular Array of Three Radiating Elements

    Get PDF
    A multibeam antenna study based on Butler network will be undertaken in this document. These antenna designs combines phase shift systems with multibeam networks to optimize multiple channel systems. The system will work at 1.7 GHz with circular polarization. Specifically, result simulations and measurements of 3 element triangular subarray will be shown. A 45 element triangular array will be formed by the subarrays. Using triangular subarrays, side lobes and crossing points are reduced

    Assessing the Feasibility of a Biofilter in Medium-to-High Scale Industries

    Get PDF
    The removal of volatile organic compounds, VOCs, from contaminated sources of air stream has become a major air pollution risk. Excessive amounts discharged to the atmosphere are highly risky to human health and to the environmental system. Demand for sustainable VOC control technologies has become crucial for the reduction of emissions. Biological treatments of waste gas streams, such as biofiltration, have proven to be cost effective and environmentally friendly compared to conventional pollution control technologies. The goal of this research is to simulate data for a given biofilter model, and to evaluate if it is economically and environmentally feasible to implement with a given set of conditions based on previous data. The model incorporates key parameters such as annual capital costs, investment costs, and annual operating costs. Results and observations show promise for developing a model that can reliably describe the effectiveness of a biofiltration system for medium scale industries

    On the Discrepancy Between the X-Ray and UV Absorption Measurements of O VI in the Local ISM

    Get PDF
    The total amount of Ovi present in the interstellar medium (ISM) obtained via absorption measurements in UV and X-ray spectra is currently in disagreement, with the latter being significantly larger (by a factor of 10 or more) than the former. Previous works have proposed that the blend of the Ovi K line (22.032 ) with the Oii K-L12 line (22.04 ) could account for the stronger absorption observed in the X-ray spectra. Here, we present a detailed study of the oxygen absorption in the local ISM, implementing our new model IGMabs which includes photoabsorption cross-sections of highly ionized species of abundant elements as well as turbulence broadening. By analysing high-resolution Chandra spectra of 13 low-mass X-ray binaries (LMXBs) and 29 extragalactic sources, we have estimated the column densities of Oi - Oiii and from Ovi - Oviii along multiple line-of-sights. We find that in most cases the Oii K-L12 line accounts for <30 per cent of the total Ovi K a + Oii K b. We conclude that the amount of Oii predicted by our model is still insufficient to explain the discrepancy between X-ray and UV measurements of Ovi column densities

    Testing the performance and accuracy of the RELXILL model for the relativistic X-ray reflection from accretion disks

    Get PDF
    The reflection spectroscopic model RELXILL is commonly implemented in studying relativistic X-ray reflection from accretion disks around black holes. We present a systematic study of the model's capability to constrain the dimensionless spin and ionization parameters from \sim6,000 NuSTAR simulations of a bright X-ray source employing the lamppost geometry. We employ high count spectra to show the limitations in the model without being confused with limitations in signal-to-noise. We find that both parameters are well-recovered at 90% confidence with improving constraints at higher reflection fraction, high spin, and low source height. We test spectra across a broad range - first at 106^6-107^7 and then \sim105^5 total source counts across the effective 3-79 keV band of NuSTAR, and discover a strong dependence of the results on how fits are performed around the starting parameters, owing to the complexity of the model itself. A blind fit chosen over an approach that carries some estimates of the actual parameter values can lead to significantly worse recovery of model parameters. We further stress on the importance to span the space of nonlinear-behaving parameters like log ξlog~\xi carefully and thoroughly for the model to avoid misleading results. In light of selecting fitting procedures, we recall the necessity to pay attention to the choice of data binning and fit statistics used to test the goodness of fit by demonstrating the effect on the photon index Γ\Gamma. We re-emphasize and implore the need to account for the detector resolution while binning X-ray data and using Poisson fit statistics instead while analyzing Poissonian data.Comment: 9 pages, 6 figures, accepted for publication in Ap

    Testing general relativity with the reflection spectrum of the supermassive black hole in 1H0707-495

    Get PDF
    Recently, we have extended the X-ray reflection model relxill to test the spacetime metric in the strong gravitational field of astrophysical black holes. In the present Letter, we employ this extended model to analyze XMM-Newton, NuSTAR, and Swift data of the supermassive black hole in 1H0707-495 and test deviations from a Kerr metric parametrized by the Johannsen deformation parameter α13\alpha_{13}. Our results are consistent with the hypothesis that the spacetime metric around the black hole in 1H0707-495 is described by the Kerr solution.Comment: 10 pages, 7 figures. v2: refereed versio

    Mesoscopic Theory of Critical Fluctuations in Isolated Granular Gases

    Get PDF
    Fluctuating hydrodynamics is used to describe the total energy fluctuations of a freely evolving gas of inelastic hard spheres near the threshold of the clustering instability. They are shown to be governed by vorticity fluctuations only, that also lead to a renormalization of the average total energy. The theory predicts a power-law divergent behavior of the scaled second moment of the fluctuations, and a scaling property of their probability distribution, both in agreement with simulations results. A more quantitative comparison between theory and simulation for the critical amplitudes and the form of the scaling function is also carried out

    PT-symmetry broken by point-group symmetry

    Get PDF
    We discuss a PT-symmetric Hamiltonian with complex eigenvalues. It is based on the dimensionless Schr\"{o}dinger equation for a particle in a square box with the PT-symmetric potential V(x,y)=iaxyV(x,y)=iaxy. Perturbation theory clearly shows that some of the eigenvalues are complex for sufficiently small values of a|a|. Point-group symmetry proves useful to guess if some of the eigenvalues may already be complex for all values of the coupling constant. We confirm those conclusions by means of an accurate numerical calculation based on the diagonalization method. On the other hand, the Schr\"odinger equation with the potential V(x,y)=iaxy2V(x,y)=iaxy^{2} exhibits real eigenvalues for sufficiently small values of a|a|. Point group symmetry suggests that PT-symmetry may be broken in the former case and unbroken in the latter one

    X-ray Reflection Spectroscopy of the Black Hole GX 339-4: Exploring the Hard State with Unprecedented Sensitivity

    Full text link
    We analyze {\it simultaneously} six composite {\it RXTE} spectra of GX 339--4 in the hard state comprising 77 million counts collected over 196 ks. The source spectra are ordered by luminosity and spanthe range 1.6\% to 17\% of the Eddington luminosity. Crucially, using our new tool {\tt pcacorr}, we re-calibrate the data to a precision of 0.1\%, an order of magnitude improvement over all earlier work. Using our advanced reflection model {\tt relxill}, we target the strong features in the component of emission reflected from the disk, namely, the relativistically-broadened Fe K emission line, the Fe K edge and the Compton hump. We report results for two joint fits to the six spectra: For the first fit, we fix the spin parameter to its maximal value (a=0.998a_*=0.998) and allow the inner disk radius RinR_{\rm in} to vary. Results include (i) precise measurements of RinR_{\rm in}, with evidence that the disk becomes slightly truncated at a few percent of Eddington; and (ii) an order-of-magnitude swing with luminosity in the high energy cutoff, which reaches >890>890 keV at our lowest luminosity. For the second fit, we make the standard assumption in estimating spin that the inner edge of the accretion disk is located at the innermost stable circular orbit (Rin=RISCOR_\mathrm{in} = R_\mathrm{ISCO}) and find a=0.950.05+0.03a_* = 0.95^{+0.03}_{-0.05} (90\% confidence, statistical). For both fits, and at the same level of statistical confidence, we estimate that the disk inclination is i=48±1i = 48\pm 1 deg and that the Fe abundance is super-solar, AFe=5±1A_\mathrm{Fe} = 5\pm1.Comment: Accepted for publication in ApJ, 20 pages, 13 figure
    corecore