171 research outputs found

    First-line therapy for post-traumatic stress disorder : a systematic review of cognitive behavioural therapy and psychodynamic approaches

    Get PDF
    Background: Despite evidence supporting cognitive behavioural therapy (CBT) based interventions as the most effective approach for treating posttraumatic stress disorder (PTSD) in randomised control trials, alternative treatment interventions are often used in clinical practice. Psychodynamic (PDT) based interventions are one example of such preferred approaches, this is despite comparatively limited available evidence supporting their effectiveness for treating PTSD. Aims: Existing research exploring effective therapeutic interventions for PTSD includes trauma-focused CBT involving exposure techniques. The present review sought to establish the treatment efficacy of CBT and PDT approaches, and considers the potential impact of selecting PDT-based techniques over CBT-based techniques for the treatment of PTSD.Results: The evidence reviewed provided examples supporting PDT-based therapy as an effective treatment for PTSD, but confirmed CBT as more effective in the treatment of this particular disorder. Comparable dropout rates were reported for both treatment approaches, suggesting that relative dropout rate should not be a pivotal factor in the selection of a PDT approach over CBT for treatment of PTSD.Conclusion/Implications: The need to routinely observe evidence-based recommendations for effective treatment of PTSD is highlighted and factors undermining practitioner engagement with CBT-based interventions for the treatment of PTSD are identified

    Roadmap on digital holography [Invited]

    Get PDF
    This Roadmap article on digital holography provides an overview of a vast array of research activities in the field of digital holography. The paper consists of a series of 25 sections from the prominent experts in digital holography presenting various aspects of the field on sensing, 3D imaging and displays, virtual and augmented reality, microscopy, cell identification, tomography, label-free live cell imaging, and other applications. Each section represents the vision of its author to describe the significant progress, potential impact, important developments, and challenging issues in the field of digital holography

    Bayesian signaling game based efficient security model for MANETs

    Get PDF
    Game Theory acts as a suitable tool offering promising solutions to security-related concerns in Mobile Ad Hoc Networks (i.e., MANETs). In MANETs, security forms a prominent concern as it includes nodes which are usually portable and require significant coordination between them. Further, the absence of physical organisation makes such networks susceptible to security breaches, hindering secure routing and execution among nodes. Game Theory approach has been manipulated in the current study to achieve an analytical view while addressing the security concerns in MANETs. This paper offers a Bayesian-Signaling game model capable of analysing the behaviour associated with regular as well as malicious nodes. In the proposed model, the utility of normal nodes has been increased while reducing the utility linked to malicious nodes. Moreover, the system employs a reputation system capable of stimulating best cooperation between the nodes. The regular nodes record incessantly to examine their corresponding nodes’ behaviours by using the belief system of Bayes-rules. On its comparison with existing schemes, it was revealed that the presented algorithm provides better identification of malicious nodes and attacks while delivering improved throughput and reduced false positive rate

    Roadmap on optical security

    Get PDF
    Information security and authentication are important challenges facing society. Recent attacks by hackers on the databases of large commercial and financial companies have demonstrated that more research and development of advanced approaches are necessary to deny unauthorized access to critical data. Free space optical technology has been investigated by many researchers in information security, encryption, and authentication. The main motivation for using optics and photonics for information security is that optical waveforms possess many complex degrees of freedom such as amplitude, phase, polarization, large bandwidth, nonlinear transformations, quantum properties of photons, and multiplexing that can be combined in many ways to make information encryption more secure and more difficult to attack. This roadmap article presents an overview of the potential, recent advances, and challenges of optical security and encryption using free space optics. The roadmap on optical security is comprised of six categories that together include 16 short sections written by authors who have made relevant contributions in this field. The first category of this roadmap describes novel encryption approaches, including secure optical sensing which summarizes double random phase encryption applications and flaws [Yamaguchi], the digital holographic encryption in free space optical technique which describes encryption using multidimensional digital holography [Nomura], simultaneous encryption of multiple signals [Pérez-Cabré], asymmetric methods based on information truncation [Nishchal], and dynamic encryption of video sequences [Torroba]. Asymmetric and one-way cryptosystems are analyzed by Peng. The second category is on compression for encryption. In their respective contributions, Alfalou and Stern propose similar goals involving compressed data and compressive sensing encryption. The very important area of cryptanalysis is the topic of the third category with two sections: Sheridan reviews phase retrieval algorithms to perform different attacks, whereas Situ discusses nonlinear optical encryption techniques and the development of a rigorous optical information security theory. The fourth category with two contributions reports how encryption could be implemented at the nano- or micro-scale. Naruse discusses the use of nanostructures in security applications and Carnicer proposes encoding information in a tightly focused beam. In the fifth category, encryption based on ghost imaging using single-pixel detectors is also considered. In particular, the authors [Chen, Tajahuerce] emphasize the need for more specialized hardware and image processing algorithms. Finally, in the sixth category, Mosk and Javidi analyze in their corresponding papers how quantum imaging can benefit optical encryption systems. Sources that use few photons make encryption systems much more difficult to attack, providing a secure method for authentication.Centro de Investigaciones ÓpticasConsejo Nacional de Investigaciones Científicas y Técnica

    Development of a core outcome set for orthodontic trials using a mixed-methods approach: Protocol for a multicentre study

    Get PDF
    © 2017 The Author(s). Background: Orthodontic treatment is commonly undertaken in young people, with over 40% of children in the UK needing treatment and currently one third having treatment, at a cost to the National Health Service in England and Wales of £273 million each year. Most current research about orthodontic care does not consider what patients truly feel about, or want, from treatment, and a diverse range of outcomes is being used with little consistency between studies. This study aims to address these problems, using established methodology to develop a core outcome set for use in future clinical trials of orthodontic interventions in children and young people. Methods/design: This is a mixed-methods study incorporating four distinct stages. The first stage will include a scoping review of the scientific literature to identify primary and secondary outcome measures that have been used in previous orthodontic clinical trials. The second stage will involve qualitative interviews and focus groups with orthodontic patients aged 10 to 16 years to determine what outcomes are important to them. The outcomes elicited from these two stages will inform the third stage of the study in which a long-list of outcomes will be ranked in terms of importance using electronic Delphi surveys involving clinicians and patients. The final stage of the study will involve face-to-face consensus meetings with all stakeholders to discuss and agree on the outcome measures that should be included in the final core outcome set. Discussion: This research will help to inform patients, parents, clinicians and commissioners about outcomes that are important to young people undergoing orthodontic treatment. Adoption of the core outcome set in future clinical trials of orthodontic treatment will make it easier for results to be compared, contrasted and combined. This should translate into improved decision-making by all stakeholders involved. Trial registration: The project has been registered on the Core Outcome Measures in Effectiveness Trials (COMET) website, January 2016

    Fatigue life of machined components

    Get PDF
    A correlation between machining process and fatigue strength of machined components clearly exists. However, a complete picture of the knowledge on this is not readily available for practical applications. This study addresses this issue by investigating the effects of machining methods on fatigue life of commonly used materials, such as titanium alloys, steel, aluminium alloys and nickel alloys from previous literature. Effects of turning, milling, grinding and different non-conventional machining processes on fatigue strength of above-mentioned materials have been investigated in detail with correlated information. It is found that the effect of materials is not significant except steel in which phase change causes volume expansion, resulting in compressive/tensile residual stresses based on the amounts of white layers. It is very complex to identify the influence of surface roughness on the fatigue strength of machined components in the presence of residual stresses. The polishing process improves the surface roughness, but removes the surface layers that contain compressive residual stresses to decrease the fatigue strength of polished specimens. The compressive and tensile residual stresses improve and reduce fatigue strength, respectively. Grinding process induces tensile residual stresses on the machined surfaces due to high temperature generation. On the other hand, milling and turning processes induce compressive residual stresses. High temperature non-conventional machining generates a network of micro-cracks on the surfaces in addition to tensile residual stresses to subsequently reduce fatigue strength of machined components. Embedded grits of abrasive water jet machining degrade the fatigue performance of components machined by this method

    What is the value of orthodontic treatment?

    Get PDF
    Orthodontic treatment is as popular as ever. Orthodontists frequently have long lists of people wanting treatment and the cost to the NHS in England was £258m in 2010-2011 (approximately 10% of the NHS annual spend on dentistry). It is important that clinicians and healthcare commissioners constantly question the contribution of interventions towards improving the health of the population. In this article, the authors outline some of the evidence for and against the claims that people with a malocclusion are at a disadvantage compared with those without a malocclusion and that orthodontic treatment has significant health benefits. The authors would like to point out that this is not a comprehensive and systematic review of the entire scientific literature. Rather the evidence is presented in order to stimulate discussion and debate

    Roadmap on optical security

    Get PDF
    Information security and authentication are important challenges facing our society. Recent attacks by hackers on the databases of large commercial and financial companies have demonstrated that more research and developments of advanced approaches are necessary to deny unauthorized access to critical data. Free space optical technology has been investigated by many researchers in information security, encryption, and authentication. The main motivation for using optics and photonics for information security is that optical waveforms possess many complex degrees of freedom such as amplitude, phase, polarization, large bandwidth, nonlinear transformations, quantum properties of photons, and multiplexing that can be combined in many ways to make the information encryption more secure and more difficult to attack. This roadmap article presents an overview of the potential, recent advances, and the challenges of optical security and encryption using free space optics. The roadmap on optical security is comprised of six categories that together include 16 short sections written by authors who have made relevant contributions in this field. The first category of this roadmap describes novel encryption approaches, including secure optical sensing which summarizes double random phase encryption applications and flaws [Yamaguchi], digital holographic encryption in free space optical technique which describes encryption using multidimensional digital holography [Nomura], simultaneous encryption of multiple signals [Pérez-Cabré], asymmetric methods based on information truncation [Nishchal], and dynamic encryption of video sequences [Torroba]. Asymmetric and one-way cryptosystems are analyzed by Peng. The second category is on compression for encryption. In their respective contributions, Alfalou and Stern propose similar goals involving compressed data and compressive sensing encryption. The very important area of cryptanalysis is the topic of the third category with two sections: Sheridan reviews phase retrieval algorithms to perform different attacks, whereas Situ discusses nonlinear optical encryption techniques and the development of a rigorous optical information security theory. The fourth category with two contributions reports how encryption could be implemented in the nano- or microscale. Naruse discusses the use of nanostructures in security applications and Carnicer proposes encoding information in a tightly focused beam. In the fifth category, encryption based on ghost imaging using single-pixel detectors is also considered. In particular, the authors [Chen, Tajahuerce] emphasize the need for more specialized hardware and image processing algorithms. Finally, in the sixth category, Mosk and Javidi analyze in their corresponding papers how quantum imaging can benefit optical encryption systems. Sources that use few photons make encryption systems much more difficult to attack, providing a secure method for authentication
    corecore