106 research outputs found

    Colloidal Synthesis of Lead Halide Perovskite Nanocrystals for Optoelectronic Application

    Get PDF
    Colloidal Synthesis of Lead Halide Perovskite Nanocrystals for Optoelectronic Applicatio

    Understanding multi-layered sanctions: a firm-level analysis

    Get PDF
    This paper examines which types of firms are hit by multi-layered sanctions, quantifies the extent of the economic impact on the affected firms, and identifies the channels through which these effects are propagated. To this end, I use a text-based approach from computational linguistics to gauge the exposure of publicly listed Iranian firms to sanctions, validating this measure through its anticipated fluctuation over time and across industries. The findings reveal three key insights. First, Iranian firms report significant challenges due to sanctions, exceeding COVID-19 concerns by up to 20%. Second, politically-connected and non-connected firms suffer equally from sanctions; for every 1lossinflictedonconnectedfirms,anexternalityof1 loss inflicted on connected firms, an externality of 5 is imposed on non-connected firms, considering their economic scale. This contradicts the idea that sanctions only inflict harm on political decision-makers. Third, sanctions are hurtful; firms with higher exposure to sanctions endure greater losses in stock market value in the wake of unanticipated sanction events. Sanctions also lead to reduced sales, investment and hiring. Furthermore, the study reveals that sanctions impact firms via several mechanisms, the primary one being the limitation of access to export destinations

    Investigation of Strength Parameters of PVA Fiber-Reinforced Fly Ash-Soil Mixtures in Large-Scale Direct Shear Apparatus

    Get PDF
    Soil reinforcement is an old and still efficient technique in improving soil strength and stiffness properties. Current paper aims at quantifying the effects of different inclusions on mechanical behavior of fiber-reinforced cemented soil. An experimental program was conducted to study simultaneous effects of randomly oriented fiber inclusions and cement stabilization on the geotechnical characteristics of fly ash-soil mixtures. Chamkhaleh sand, polyvinyl alcohol (PVA) fiber, cement and fly ash with some water were mixed and compacted into large scale direct shear apparatus with three equal layers. PVA fibers were randomly distributed in three compacted layers at predetermined weight contents. Direct shear tests were carried out on fly ash-soil specimens prepared with different cement, fly ash and polyvinyl alcohol contents, and 7 different curing periods. Results show that cement increases the strength of the raw fly ash-soil specimens. The fiber inclusion further increases the strength of the cemented and uncemented soil specimens and transforms their brittle behavior to ductile behavior. The fiber reinforcement and distribution throughout the entire specimen results in a significant increase in the strength of fly ash -soil- cement mixtures

    Advances in All-Inorganic Perovskite Nanocrystal-Based White Light Emitting Devices

    Get PDF
    Metal halide perovskites (MHPs) are exceptional semiconductors best known for their intriguing properties, such as high absorption coefficients, tunable bandgaps, excellent charge transport, and high luminescence yields. Among various MHPs, all-inorganic perovskites exhibit benefits over hybrid compositions. Notably, critical properties, including chemical and structural stability, could be improved by employing organic-cation-free MHPs in optoelectronic devices such as solar cells and light-emitting devices (LEDs). Due to their enticing features, including spectral tunability over the entire visible spectrum with high color purity, all-inorganic perovskites have become a focus of intense research for LEDs. This Review explores and discusses the application of all-inorganic CsPbX3 nanocrystals (NCs) in developing blue and white LEDs. We discuss the challenges perovskite-based LEDs (PLEDs) face and the potential strategies adopted to establish state-of-the-art synthetic routes to obtain rational control over dimensions and shape symmetry without compromising the optoelectronic properties. Finally, we emphasize the significance of matching the driving currents of different LED chips and balancing the aging and temperature of individual chips to realize efficient, uniform, and stable white electroluminescence

    In situ transmission electron microscopy study of electron beam-induced transformations in colloidal cesium lead halide perovskite nanocrystals

    Get PDF
    An increasing number of studies have recently reported the rapid degradation of hybrid and all-inorganic lead halide perovskite nanocrystals under electron beam irradiation in the transmission electron microscope, with the formation of nanometer size, high contrast particles. The nature of these nanoparticles and the involved transformations in the perovskite nanocrystals are still a matter of debate. Herein, we have studied the effects of high energy (80/200 keV) electron irradiation on colloidal cesium lead bromide (CsPbBr3) nanocrystals with different shapes and sizes, especially 3 nm thick nanosheets, a morphology that facilitated the analysis of the various ongoing processes. Our results show that the CsPbBr3 nanocrystals undergo a radiolysis process, with electron stimulated desorption of a fraction of bromine atoms and the reduction of a fraction of Pb2+ ions to Pb0. Subsequently Pb0 atoms diffuse and aggregate, giving rise to the high contrast particles, as previously reported by various groups. The diffusion is facilitated by both high temperature and electron beam irradiation. The early stage Pb nanoparticles are epitaxially bound to the parent CsPbBr3 lattice, and evolve into nonepitaxially bound Pb crystals upon further irradiation, leading to local amorphization and consequent dismantling of the CsPbBr3 lattice. The comparison among CsPbBr3 nanocrystals with various shapes and sizes evidences that the damage is particularly pronounced at the corners and edges of the surface, due to a lower diffusion barrier for Pb0 on the surface than inside the crystal and the presence of a larger fraction of under-coordinated atoms

    Temperature Driven Transformation of CsPbBr3_3 Nanoplatelets into Mosaic Nanotiles in Solution through Self-Assembly

    Full text link
    Two-dimensional colloidal halide perovskite nanocrystals are promising materials for light emitting applications. In addition, they can be used as components to create a variety of materials through physical and chemical transformations. Recent studies focused on nanoplatelets that are able to self-assemble and transform on solid substrates. Yet, the mechanism behind the process and the atomic arrangement of their assemblies remain unclear. Here, we present the transformation of self-assembled stacks of CsPbBr3_3 nanoplatelets in solution, capturing the different stages of the process by keeping the solutions at room temperature and monitoring the nanocrystal morphology over a period of a few months. Using ex-situ transmission electron microscopy and surface analysis, we demonstrate that the transformation mechanism can be understood as oriented attachment, proceeding through the following steps: i) desorption of the ligands from the particles surfaces, causing the merging of nanoplatelet stacks, which first form nanobelts; ii) merging of neighboring nanobelts that form more extended nanoplates; and iii) attachment of nanobelts and nanoplates, which create objects with an atomic structure that resemble a mosaic made of broken nanotiles. We reveal that the starting nanoplatelets merge seamlessly and defect-free on an atomic scale in small and thin nanobelts. However, aged nanobelts and nanoplates, which are mainly stabilized by amine/ammonium ions, link through a bilayer of CsBr. In this case, the atomic columns of neighboring perovskite lattices shift by a half-unit-cell, forming Ruddlesden-Popper planar faults.Comment: 28 pages, 5 Figure
    • …
    corecore