46 research outputs found

    Digital Art as ‘Monetised Graphics:’ Enforcing Intellectual Property on the Blockchain

    Get PDF
    In a global economic landscape of hyper-commodification and financialisation, efforts to assimilate digital art into the high-stakes commercial art market have so far been rather unsuccessful, presumably because digital art works cannot easily assume the status of precious object worthy of collection. This essay explores the use of blockchain technologies in attempts to create proprietary digital art markets in which uncommodifiable digital art works are financialised as artificially scarce commodities. Using the decentralisation techniques and distributed database protocols underlying current cryptocurrency technologies, such efforts, exemplified here by the platform Monegraph, tend to be presented as concerns with the interest of digital artists and with shifting ontologies of the contemporary work of art. I challenge this characterisation, and argue, in a discussion that combines aesthetic theory, legal and philosophical theories of intellectual property, rhetorical analysis, and research in the political economy of new media, that the formation of proprietary digital art markets by emerging commercial platforms such as Monegraph constitutes a worrisome amplification of long-established, on-going efforts to fence in creative expression as private property. As I argue, the combination of blockchain-based protocols with established ambitions of intellectual property policy yields hybrid conceptual-computational financial technologies (such as self-enforcing smart contracts attached to digital artefacts) that are unlikely to empower artists, but which serve to financialise digital creative practices as a whole, curtailing the critical potential of the digital as an inherently dynamic and potentially uncommodifiable mode of production and artistic expression

    Three Centuries of Macro-Economic Statistics

    Full text link

    GDP Estimates: Rationality Tests and Turning Point Performance

    No full text

    UNESCO, The UCC and Copyright Access

    No full text

    Silicon Nitride Based Non-Volatile Memory Structures with Embedded Si or Ge Nanocrystals

    No full text
    Memory structures with an embedded sheet of separated Si or Ge nanocrystals were prepared by low pressure chemical vapour deposition using a Si3N4 control and SiO2 tunnel layers. It was obtained that a properly located layer of semiconductor nanocrystals can improve both the charging and retention behaviour of the MNOS structures simultaneously. Memory window width of above 6 V and retention time of 272 years was achieved for charging pulses of 15 V, 10 ms
    corecore