15 research outputs found
Arterial input function estimation compensating for inflow and partial voluming in dynamic contrast-enhanced MRI
Both inflow and the partial volume effect (PVE) are sources of error when measuring the arterial input function (AIF) in dynamic contrast-enhanced (DCE) MRI. This is relevant, as errors in the AIF can propagate into pharmacokinetic parameter estimations from the DCE data. A method was introduced for flow correction by estimating and compensating the number of the perceived pulse of spins during inflow. We hypothesized that the PVE has an impact on concentration–time curves similar to inflow. Therefore, we aimed to study the efficiency of this method to compensate for both effects simultaneously. We first simulated an AIF with different levels of inflow and PVE contamination. The peak, full width at half-maximum (FWHM), and area under curve (AUC) of the reconstructed AIFs were compared with the true (simulated) AIF. In clinical data, the PVE was included in AIFs artificially by averaging the signal in voxels surrounding a manually selected point in an artery. Subsequently, the artificial partial volume AIFs were corrected and compared with the AIF from the selected point. Additionally, corrected AIFs from the internal carotid artery (ICA), the middle cerebral artery (MCA), and the venous output function (VOF) estimated from the superior sagittal sinus (SSS) were compared. As such, we aimed to investigate the effectiveness of the correction method with different levels of inflow and PVE in clinical data. The simulation data demonstrated that the corrected AIFs had only marginal bias in peak value, FWHM, and AUC. Also, the algorithm yielded highly correlated reconstructed curves over increasingly larger neighbourhoods surrounding selected arterial points in clinical data. Furthermore, AIFs measured from the ICA and MCA produced similar peak height and FWHM, whereas a significantly larger peak and lower FWHM was found compared with the VOF. Our findings indicate that the proposed method has high potential to compensate for PVE and inflow simultaneously. The corrected AIFs could thereby provide a stable input source for DCE analysis.</p
Phase 3 Randomized Trial of Prophylactic Cranial Irradiation With or Without Hippocampus Avoidance in SCLC (NCT01780675)
Introduction: To compare neurocognitive functioning in patients with SCLC who received prophylactic cranial irradiation (PCI) with or without hippocampus avoidance (HA). Methods: In a multicenter, randomized phase 3 trial (NCT01780675), patients with SCLC were randomized to standard PCI or HA-PCI of 25 Gy in 10 fractions. Neuropsychological tests were performed at baseline and 4, 8, 12, 18, and 24 months after PCI. The primary end point was total recall on the Hopkins Verbal Learning Test-Revised at 4 months; a decline of at least five points from baseline was considered a failure. Secondary end points included other cognitive outcomes, evaluation of the incidence, location of brain metastases, and overall survival. Results: From April 2013 to March 2018, a total of 168 patients were randomized. The median follow-up time was 26.6 months. In both treatment arms, 70% of the patients had limited disease and baseline characteristics were well balanced. Decline on the Hopkins Verbal Learning Test-Revised total recall score at 4 months was not significantly different between the arms: 29% of patients on PCI and 28% of patients on HA-PCI dropped greater than or equal to five points (p = 1.000). Performance on other cognitive tests measuring memory, executive function, attention, motor function, and processing speed did not change significantly different over time between the groups. The overall survival was not significantly different (p = 0.43). The cumulative incidence of brain metastases at 2 years was 20% (95% confidence interval: 12%-29%) for the PCI arm and 16% (95% confidence interval: 7%-24%) for the HA-PCI arm. Conclusions: This randomized phase 3 trial did not find a lower probability of cognitive decline in patients with SCLC receiving HA-PCI compared with conventional PCI. No increase in brain metastases at 2 years was observed in the HA-PCI arm. (C) 2021 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved
Mitochondrial physiology
As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
Mitochondrial physiology
As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
Subcortical brain volume, regional cortical thickness, and cortical surface area across disorders: findings from the ENIGMA ADHD, ASD, and OCD Working Groups
Objective Attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and obsessive-compulsive disorder (OCD) are common neurodevelopmental disorders that frequently co-occur. We aimed to directly compare all three disorders. The ENIGMA consortium is ideally positioned to investigate structural brain alterations across these disorders.
Methods Structural T1-weighted whole-brain MRI of controls (n=5,827) and patients with ADHD (n=2,271), ASD (n=1,777), and OCD (n=2,323) from 151 cohorts worldwide were analyzed using standardized processing protocols. We examined subcortical volume, cortical thickness and surface area differences within a mega-analytical framework, pooling measures extracted from each cohort. Analyses were performed separately for children, adolescents, and adults using linear mixed-effects models adjusting for age, sex and site (and ICV for subcortical and surface area measures).
Results We found no shared alterations among all three disorders, while shared alterations between any two disorders did not survive multiple comparisons correction. Children with ADHD compared to those with OCD had smaller hippocampal volumes, possibly influenced by IQ. Children and adolescents with ADHD also had smaller ICV than controls and those with OCD or ASD. Adults with ASD showed thicker frontal cortices compared to adult controls and other clinical groups. No OCD-specific alterations across different age-groups and surface area alterations among all disorders in childhood and adulthood were observed.
Conclusion Our findings suggest robust but subtle alterations across different age-groups among ADHD, ASD, and OCD. ADHD-specific ICV and hippocampal alterations in children and adolescents, and ASD-specific cortical thickness alterations in the frontal cortex in adults support previous work emphasizing neurodevelopmental alterations in these disorders
The potential of advanced MR techniques for precision radiotherapy of glioblastoma
As microscopic tumour infiltration of glioblastomas is not visible on conventional magnetic resonance (MR) imaging, an isotropic expansion of 1-2 cm around the visible tumour is applied to define the clinical target volume for radiotherapy. An opportunity to visualize microscopic infiltration arises with advanced MR imaging. In this review, various advanced MR biomarkers are explored that could improve target volume delineation for radiotherapy of glioblastomas. Various physiological processes in glioblastomas can be visualized with different advanced MR techniques. Combining maps of oxygen metabolism (CMRO2), relative cerebral blood volume (rCBV), vessel size imaging (VSI), and apparent diffusion coefficient (ADC) or amide proton transfer (APT) can provide early information on tumour infiltration and high-risk regions of future recurrence. Oxygen consumption is increased 6 months prior to tumour progression being visible on conventional MR imaging. However, presence of the Warburg effect, marking a switch from an infiltrative to a proliferative phenotype, could result in CMRO2 to appear unaltered in high-risk regions. Including information on biomarkers representing angiogenesis (rCBV and VSI) and hypercellularity (ADC) or protein concentration (APT) can omit misinterpretation due to the Warburg effect. Future research should evaluate these biomarkers in radiotherapy planning to explore the potential of advanced MR techniques to personalize target volume delineation with the aim to improve local tumour control and/or reduce radiation-induced toxicity
Phase 3 Randomized Trial of Prophylactic Cranial Irradiation With or Without Hippocampus Avoidance in SCLC (NCT01780675)
Introduction: To compare neurocognitive functioning in patients with SCLC who received prophylactic cranial irradiation (PCI) with or without hippocampus avoidance (HA). Methods: In a multicenter, randomized phase 3 trial (NCT01780675), patients with SCLC were randomized to standard PCI or HA-PCI of 25 Gy in 10 fractions. Neuropsychological tests were performed at baseline and 4, 8, 12, 18, and 24 months after PCI. The primary end point was total recall on the Hopkins Verbal Learning Test—Revised at 4 months; a decline of at least five points from baseline was considered a failure. Secondary end points included other cognitive outcomes, evaluation of the incidence, location of brain metastases, and overall survival. Results: From April 2013 to March 2018, a total of 168 patients were randomized. The median follow-up time was 26.6 months. In both treatment arms, 70% of the patients had limited disease and baseline characteristics were well balanced. Decline on the Hopkins Verbal Learning Test-Revised total recall score at 4 months was not significantly different between the arms: 29% of patients on PCI and 28% of patients on HA-PCI dropped greater than or equal to five points (p = 1.000). Performance on other cognitive tests measuring memory, executive function, attention, motor function, and processing speed did not change significantly different over time between the groups. The overall survival was not significantly different (p = 0.43). The cumulative incidence of brain metastases at 2 years was 20% (95% confidence interval: 12%–29%) for the PCI arm and 16% (95% confidence interval: 7%–24%) for the HA-PCI arm. Conclusions: This randomized phase 3 trial did not find a lower probability of cognitive decline in patients with SCLC receiving HA-PCI compared with conventional PCI. No increase in brain metastases at 2 years was observed in the HA-PCI arm